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A SIMPLE TEST FOR REGRESSION PARAMETER INSTABILITY
RICHARD ASHLEY*

The relative advantages of simple, exact tests over sophisticated but
conservative tests gre stressed and a simple diagnostic test to detect
Tegression parameter instability is proposed. The test is exact (in the sta-
tistical sense), easy to perform using any regression package, and simple
enough to present in a first year course. Thus, this test has the potential
for widespread use. Monte Carlo simulgtion results are presented which
indicate that the power of the test is comparable to that of more sophisti-
cated alternatives — e.g., the VPR test of Garbade (1977). As an illustra-
tion, the test is applied to a bivariate forecasting model for Texas persongl
income constructed using time series analysis techniques.

I. INTRQDUCTION

Much effort has been expended recently in the construction of sophisticated tests
which detect regression parameter instability. The purpose of this Ppaper is to propose
a very simple test for parameter instability and to show that its performance is com-
parable to that of sophisticated alternatives. ' .

Why is it useful to consider such a simple test? For one thing, the ordinary econo-
mist is unlikely to apply a diagnostic test which he has neither the background to
understand nor the software to employ; more likely he will ignore the (possible)
problem or test for it in an ad hoc manner. A simple but rigorous test which actually
is applied is much more likely to correctly refect null hypotheses involving real data
than a sophisticated test which is rarely or never applied. Moreover, the sophisti-
cated tests often involve approximations; consequently, the actual size of these testsis
often unknown, even asymptotically. This would seem to be a fatal embarrassment
for a formal statistical test, except that the statistical community apparently is will-
ing to accept tests for which only an upper bound on the size is known. Such tests are
called “conservative.”

Conservative tests can have high power in Monte Carlo simulations, where it is
possible to adjust critical points to obtain, say, a 5% size. On real data, however, no

- such adjustment is possible. In that case & simple 5% test involving no approxima-

tions may systematically reject the null hypothesis more often than the conservative,
sophisticated 5% test, merely because the conservative test has an actual size less
than 5%. True, the probability of Type I error is smaller for the conservative test,
but both results must, in all honesty, be reported and considered as 5% results,
Consequently, it seems more sensible to compute and compare the nominal power of
statistical tests, where nominal power is the probability of correctly rejecting the
null hypothesis for a given nominal size. The nominal power of a test is, of course,
identical to its power if and only if the test isexact — i.e., if it has known size. Thus, a
second reason for considering simple tests is that their nominal power can be compa-
rable or superior to that of sophisticated, but approximate, tests.
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It was recognized quite early that one of the first casualties from the use of a
faulty or incomplete economic model is the validity of the fixed coefficient assump-
tion of the standard regression model, an assumption which is necessary in order to
derive the optimality (efficiency, BLUness, etc.) of OLS regression. This recognition
led to Quandt’s (1958) work on regressions which switch from one set of fixed coefti-
cients to another and to Chow'’s (1960) well-known test for a change in one or more
coefficients between one part of the sample and the rest. [Maddala (1977, p. 198),
lists still earlier references to the same test in the statistics literature. See also Farley
and Hinich (1970) and Farley, Hinich, and McGuire (1975) for a simple alternative
to the Chow test. ] . )

More recently the profession has begun to consider alternatives to the fixed coeffi-
‘cient model where the parameters vary stochastically in every period. Cooley and
Prescott (1973, 1976) introduced what they called the varying parameter regression
model; there the k dimensional parameter vector, 3,, evolves in time according to a
random walk:

(1.1) Y, = X.B + e t=1,...,N
(1.2) e, ~ N(0, o)

(1.3) B, = B + u t=1,...,N
(1.4)  u,~N(@©,P), .

where ¢, and u, are independent white noise series and P is an exogenously given
(k x k) matrix. Since «, has mean zero, the parameters do not change on average;
. however, their variance grows linearly with time. An alternative model, which is
perhaps more consonant with the existence of a meaningful economic theory under-
lying the specification, is Rosenbergs (1973) stochastically convergent parameter
model, which appeared shortly thereafter. In Rosenberg’s model

(1.5} B, = (L-N)B* + M + u, t=1,...,N,

where 0 < A < 1. Now 8, tends to converge to the fixed parameter vector §* and
ends up varying around 8* with a fixed steady state variance.

Stimulated by these developments, several new diagnostic tests for unstable
regression coefficients have appeared recently, each designed to remain powerful in
the context of stochastically varying parameters. The purpose of this paper is to
introduce a simple test which has a number of desirable properties; first, however,
each of these previously suggested tests is briefly reviewed.

The first test is due to Brown, Durbin and Evans (1975). They propose two tests,
the “cusum” test and the “cusum of squares” test, both based on the recursive resid-
uals w,,,, . . . , wy. These residuals are the scaled one-step-ahead postsample fore-
cast errors obtained by repeated ordinary least squares regression, increasing the
sample size by one period at each repetition. Under the usual classical assumptions it
can be shown that the w, are independent normal variates with zero mean and unit
variance.
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The “cusum” test uses cumulative sums of the w, series. Simulations in Garbade
(1977) show that this test haslittle power to reject the null hypothesis of stable coeffi-
cients, so the cusum test will not be considered any further here. The “cusum of
squares” test, which is based on cumulative sums of the squares of the w,’s is more
powerful. It will be denoted “BDE” below.

The BDE test has three major drawbacks. First, it is neither exact, nor even
conservative. For example, LaMotte and McWhorter (1980) find that a 5% BDE
test wrongly rejects the null hypothesis of coefficient stability 7.3% of the time in
their simulations. Second, the test inherently considers the stability of all k coeffi-
cients simultaneously; it is not possible to focus on a subset of the coefficients whose
stability may be either in greater doubt or of more intense interest.! Finally, the
results reported in section III below [and also similar results in LaMotte and
McWhorter (1980) and Garbade (1977)] show that the power of the BDE test is
substantially lower than that of the alternative tests discussed below. These results
are plausible in view of Farley, Hinich and McGuire’s {1975) proof that the BDE test
is inconsistent.

The second recent diagnostic test is the varying-parameter regression test (VPR)
introduced by Garbade (1977). He assumes the same coefficient variation model
described in equations 1.1 to 1.4 above and tests the null hypothesis that the (kxk)
matrix P is zero. This null Kypothesis is equivalent to the assumption of stable
coefficients.

When more than one coefficient is tested, the P matrix must be assumed to be a
scalar multiple of some exogenously given matrix in order to proceed. Typically, this
exogenous matrix is taken to be the identity matrix, but this choice seems quite arbi-
trary. It implies, for example, that the variance of each component of 3, grows lin-
early with time at the same rate. Under the null hypothesis, of course, it does not
matter because this rate is zero,

The VPR test statistic does not have convement statistical properties, however.
For example, when k is one (so that P is a scalar) the likelihood ratio statistic is
asymptotically distributed x* (1) under null hypotheses of the form: H;: P.= P, only
when F, is greater than zero. For this reason, the actual size of the test is uncertain in
practice even for large samples. The VPR test is conservative, in fact markedly so.
For example, LaMotte and McWhorter (1980) find that a 5% VPR test wrongly
rejects the null hypothesis only 1.0% of the time in their simulations,

So the VPR test is not particularly appealing on a priori grounds, On the other
hand, the simulations in Garbade (1977) indicate that the VPR test is dramatically
more powerful than both tests proposed by Brown, Durbin, and Evans (1975) in a
variety of circumstances.

LaMotte and McWhorter (1978) have proposed an exact test which they desig-
nate LM. The LM test is based on the Cooley-Prescott random walk model of
parameter variation also. As with the VPR test, the P matrix is expressed as a scalar
multiple (o) of an exogenously given matrix (D), usually taken (arbitrarily) to be an
identity matrix. The null hypothesis that o2 {s zero is then tested using a set of suffi-
cient statistics invariant to changes in 8,, the starting value of the parameter vector.

LaMotte and McWhorter (1980) compare the power of the LM test to that of a

1. The BDE test shares this disadvantage with the tests on the recursive residuals suggested by Harvey
(1978). ‘
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number of likelihood ratio based alternatives, including one (FL.R) which is equiva-
lent to the VPR test, on a model with random walk parameter variation. They con-
clude that all of these tests have roughly the same power when adjusted to have the
same actual size. (Recall that the actual size of a 5% VPR test is substantially less
than 5% because it is not exact.) But such adjustments cannot be done in practice, so
the unadjusted (nomina! power) results in their table 1 are more relevant. Averaging
over these results yields a power of 45% for the LM test versus 35% for the VPR test,
so the LM test is more powerful in this instance than the VPR test. LaMotte and
McWhorter prefer the LM test because it is also exact and involves no numerical
optimization. .

" On the other hand, the LM test has drawbacks of its own. It does not have the
intuitive appeal of the VPR test, for example. In addition, the LM test is invariant to
changes in §, only for a given, fixed D matrix; from the discussion of the VPR test
above, however, it should be clear that the appropriate D matrix is not invariant to
scale changes in 8,. Suppose that the kth component of 8, becomes ten times larger
because the kth explanatory variable is now measured in different units. f Dwasak
dimensional identity matrix to begin with, then surely its kth diagonal element must
now become one hundred; otherwise the degree of varfation in the kth parameter
will be distorted relative to the others, Thus, the LM test is fully invariant to changes
in 8, only in the special case where the test is separately applied to each coefficient by
setting all of the elements of D to zero except for one diagonal element.

The LM test also requires a substantial amount of computation. First an
orthonormal basis must be formed for the N - k dimensional vector subspace ortho-
gonal to the columns of the (Nxk) data matrix. Then the eigenvalues and eigen-
vectors of an N - k dimensional matrix must be obtained. The expense of the test

 clearly grows quite quickly with the sample size, N. In addition, the VPR and BDE
tests each provide a plot indicating the manner in which the coefficients appear to
vary over the sample; the LM test does not.2

A simple test for unstable regression coefficients based on dummy variables is
introduced below. Itis

a. exact

b. easy to compute using only a standard regression package,

c. roughly as powerful (nominally) as the VPR test, and

d. sosimple that it can easily be covered in a first year regression course.3

2. A lagrange multiplier test has been proposed by Watson and Engle (1980) while this paper was in
preparation. Their test has a more flexible alternative{ypothwis than the LM and VPR tests, being based
on Rosenberg’s stochastically convergent markov model. On the other hand, the Watson/Engle test is quite -
conservative even for moderately large samples. [ E.g., they report (table 1) an average actual size for their
5% test of 1.08% for N = 30 and 0%2.75 % for N = 100.] So the nominal power of the test is prabably
comparable to that of the VPR and LM tests. In addition, the Watson/Engle test gives no picture of how
the coefficients actually vary over the sample.

3. This last point Is somewhat double-edged. This test is so simple that it may be unfashionable to
suggest ft. Moreover, it must be noted explicitly that the author makes no claim as to having invented the
use of dummy variables to detect parameter variation. The essential contribution of this paper is the
assertion that the simple test proposed here compares favorably with the sophisticated tests n the recent
literature.
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In addition, it assumes little about the form of the instability, thus eliminating the
need for separate tests against outliers, discrete parameter jumps, deterministic
parameter drift, etc. This new test does yield a plot of the estimated parameter
varlation over time; the author calls this plot a “stabilogram,” so the test itself is
denoted “STAB” below. The STAB test is defined in section II. Its nominal power is
investigated using Monte Carlo simulations in section III.

The stabilogram plays a role analogous to that of the correlogram in Box-Jenking
modeling — it can be used to test formally the need for further specification modifi-
cations and it can also be used informally to suggest the form such modifications
should take. These uses are illustrated in section IV where stabilogram analysis is
applied to a bivariate time series analysis model for forecasting the growth rate in
personal income for Texas. Conclusions are noted in section V.

Il. THE STABILOGRAM (STAB) TEST

The stabilogram test is a straightforward application of covariance analysis
[e.g., Johnston (1972), pp. 192-207]. Under the null hypothesis of stable coefficients
the observations, y,, are assumed to be generated by the standard linear model:

i k .
(2.1) Yy, = L Bz, + u, t=1,...,N.
t=1
(2.2) u, ~ N(0, o%),

where the x,, are exogenously given and the u, are non-autocorrelated.,

In its simplest form the test is applied to one coefficient at a time, There is no loss
of generality in supposing that it is the kth coefficient whose stability is to be tested.
The first step is to partition the sample period into r approximately equal subperiods
of about i = N/r observations each. Then r dummy variables, D, . .., D#,
are defined such that D™ is one only in the first subperiod; D* is one only in the
second subperiod, ete. Ordinary least squares regression is then applied to

k-1 r .

(2'3) Y = L Brxu + N 'Y|D|m X, + U, t = 1..., N.
E=1 j=1

The sequence of parameter estimates, 4,, ..., ¥,, is the stabilogram of order {1 for

the kth coefficient, or STAB(i, k).

Since each of these estimated coefficients is an estimator of 8, from a different
subperiod, a picture of how B, varies over time can be easily obtained by plotting a’
confidence interval around 4, versus{. This is the “stabilogram” defined at the end of
section I. This plot gives a visual indication as to what kind of parameter variation
might be occurring. For example, where the confidence intervals trend upward

substantially, one might tentatively conclude that a trending parameter is involved,
and so forth.
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It should-be noted that the stabilogram is not the only way to plot estimated
parameter variation, Garbade’s VPR test produces a plot of the estimated variation
in the parameter also. In that plot the parameter estimates are based on an increas-
ing number of observations as you move through the sample period. Brown, Durbin,
and Evans (1975) have implemented a similar plot in théir TIMVAR program; their
“moving regressions” plot is the same as Garbade’s except that they drop an early
observation each time an additional observation is added, so that each parameter
estimate in the plot is based on the same number of observations. Both of these plots
are useful in that they appear to be more detailed than a stabilogram plot. On the
other hand, they both require specialized software to produce efficiently and they
both give a highly smoothed picture of the actual parameter variation. In contrast,
the stabilogram smooths the variation only within each subperiod, so that the stabi-
logram will in general give a less highly smoothed picture of the parameter varia-
tion, with the degree of smoothing to a substantial degree under the user’s control.
Thestabilogram also has the nice feature that the confidence intervals in it are exact,
whereas the moving regressions plot does not give tolerance limits and those given by
the VPR plot are only approximate,

The null hypothesis of stable coefficients corresponds to the r - 1 linear restric-
tionsy, = y, = ... = v,. These may be easily tested using standard methods — e.g.,
Maddala (1977, pp. 197-8). The appropriate test statistic is

(RSS - URSS)/(r - 1)

2.4 STAB = ’
@4 URSS/(N-k-r + 1)

which is distributed F(r -1, N~k - + 1) under the null hypothesis. RSS is the sum
of squared residuals from equation 2.1 and URSS is the sum of squared residuals
from equation 2.3. ,

This test is equivalent to the usual Chow test whenever there are just two sub-
periods. However, using such a small number of subperiods can be expected to yield
a test of low power when the coefficients vary stochastically according to equation
1.3 or 1.5. On the other hand, there are insufficient degrees of freedom to compute
STAB(1, k).

Clearly the useful values of i lie somewhere in between these extremes. Greater
resolution (smaller, more numerous subperiods) leads to fewer degrees of freedom in
the estimated variance of u, and consequently to fewer degrees of freedom in the
denominator of the F statistic. In practice, subperiods of length five (i.e., { = 5)
seem to work well. But this choice is not critical — in the example described in
section IV, subperiods of length twelve gave useful results.

The computational expense rises with r, the number of subperiods used, butonly
as fast as the cost of inverting the r + k - 1 dimensional data matrix (X'X) used in
OLS estimation of equation 2.3. Typically the value of r (and hence of i) is bounded
by storage limitations in the regression package, not by computational expense.
Note, however, that almost all of the computational burden and the storage require-
ments for large r can be eliminated if k is small by exploiting the simple (largely
diagonal) structure of the X*X matrix to obtain (X'X)~ analytically. Even when k is
notsmall, the problem can be avoided by an appropriate partitioning of X'X so that
the largest non-diagonal matrix to be inverted is of order k- 1.
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Insome cases it is desirable or necessary to drop the restriction that the subperiods
be of approximately equal length. For example, when one of the other k - 1 regres-
sors is itself a dummy variable, a little caution must be exercised to avoid collinearity
problems. And where the parameter variation {or one’s interest in it) is localized in
one part of the sample, that part can be examined at higher resolution by using
smaller subperiods in that section, Note, however, that subperiods only one period
long yield less interpretable results since the residual in that period will be forced to
zero regardless of which coefficient is tested.

In still other cases one might want to test the stability of several coefficients at the
same time. This, too, can be done (in an obvious way), at a further cost in resolution
for any given sample size. Where the stability of all k coefficients is tested simultane-
ously, the STAB statistic is equivalent to the “homogeneity” statistic described in
Brown, Durbin and Evans (1975, p. 156) and implemented in their TIMVAR pro-
gram. Typically, however, the STAB test would be applied to only one or a few
coefficients whose stability was of special interest. For example, it would not make
much sense to examine the stability of the coefficient on a wartime dummy variable.
Anocther reason for limiting attention to just one or a few coefficients is that multi-
collinearity in the explanatory variables may otherwise cause the confidence inter-
vals plotted in the stabilogram plot to become uninterpretably large.

It must be noted, however, that the sequential application of the STAB test one
coefficient at a time to more than one coefficient (in search of a significant result) isa
form of data mining. As with all data minin g, such a practice distorts the true signif-
icance level of the test. Consequently, it must be anticipated that some of the most
suitable applications for the stabilogram test will be situations where either

a. there is enough data so that stabilogram durmmy variables can be placed
simultaneously on all coefficierits of interest.

or
b. thestability of only a few coefficients is at issue or of interest.

For example, Spoede (1982) examines the stability of the parameter beta in the capi-
tal asset pricing model using stabilogram methods; an additional example is given
below.

The STAB test is flexible, convenient, and simple; in addition it seems squarely
focussed on the parameter variation issue. The critical question is, how powerful is
the test against plausible forms of parameter instability? This question is taken up in
the next section. -

Nt SIMULATION RESULTS

In this section the power of the stabilogram test, STAB (i, k), defined above, is
compared to that of the VPR, BDE, and Chow tests. The VPR and BDE tests are not
exact, so the “power” of these tests as calculated and discussed in this section is
understood to be “nominal power.” I.e., the tests are performed just as their origina-
tors described them. No effort is made to adjust artificially the eritical points of these
tests to make the actual size equal to the nominal size, since this kind of adjustment
can never be made in practice with real data.

BRI T e
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The comparison is made using Monte Carlo simulations designed to be directly
comparable to those in which Garbade (1977) compared the power of the VPR and
BDE tests. The model considered here is a simple one with just one explanatory
variable:

(31) Yy = chn + €, t = 1,- . ,N
3.2 e, ~ N, 1
(3.3) z, ~ N(0, 5).

The x, series was generated just once and held constant over all replications.?
Following Garbade (1977), three patterns of stochastic coefficient instability were
considered:

Random Walk
Case 1: (corresponds to equation 1.3 and to table 1)
g, = 10 P = ,01,.10,1.00
Bl = Ba—l + u, t = 2,-.-,N for and
tu, ~ N, P) . N = 15,31,61
Case 2: Stable Markov Process
: {corresponds to equation 1.5 and to table 2)
B, = 1.0 P = .01,.10,1.00
B, = .7+ 3B, +u t=2,... ,N for and
u, ~ N, P) N = 15,31,61
Case 3: Discrete Jump
B, =1 1<t<.5(N-1) ; d = 1,10,100
o
G =1+ (dBN®) S(N-l)stsN|  \N = 15316l

Simulation results are reported for each of these patterns in tables 1, 2, and 3,
respectively, In each case the table gives the fraction of the trials in which a (nomi-
nal) 5% test rejected the null hypothesis of stable coefficients. The limiting factor on
the number of replications was the expense of the numerical likelihood maximiza-
tions needed for the VPR test. This expense was greatly exacerbated by the frequent
presence of multiple relative maxima. Consequently, the number of repetitions was
set at two hundred.

4. STAB simulations were repeated using.a highly autocorrelated x, series — AR({1) with ¢ = .80 —
the results were similar to those reported below.
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TABLE 1
Random Walk Process
{Power on 5% Test)

P N=15 N=31 N =481
01 STAB(2, 1) 33.0 60.5 93.0
STAB(5, 1) 47.0 80.0 98.0

VPR 38.0 83.0 90.0

BDE 9.0 24.0 61.0

Chow* 48.0 62.0 79.0

.10 STAB(2, 1) 79.5 97.0 100.0
STAB(3, 1) 79.0 87.0 100.0

VPR B2.0 98.5 100.0

BDE 22.5 57.0 79.0

Chow* 68.5 71.5 83.5

1.00 STAB(2, 1) 89.0 100.0 100.0
STAB(5, 1) 86.0 100.0 100.0

VPR 95.5 100.0 100.0

BDE 35.5 62.0- 82.5

Chow* 78.0 78.0 87.5

*The Chow test splits the sample in half. It is thus equivalent to
STAB(8, 1) for N = 15, to STAB(16, 1) for N ~ 31, and to STAB (3, 1) for

N = 6l.
TABLE 2
Stable Markov Process
{Power on 5% Test)
P N=15 N=31 N = 61
.01 STAB(2, 1) 9.5 7.0 16.0
STAB(5, 1) 1.5 9.5 20.5
VPR 4.5 3.0 2.5
BDE 9.5 7.0 9.5
Chow* 6.5 6.5 6.5
.10 STAB(2, 1) 19.0 43.5 71.5
STAB(5, 1) 23.5 49.5 78.0
VPR 19.5 32.5 53.0
BDE 14.0 15.5 31.5
Chow* 15.5 18.0 26.5
1.00 STAB{2, 1) 29.5 710 94.5
' STAB(5, 1) 25.0 63.5 92.5
VPR 34.5 72.5 084.0
BDE 22.5 26.0 49.0
Chow* 18.0 17.0 28.5

*See note “a” for Table 1.
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TABLE 3

Discrete Jurp
(Power on 5% Test)

d N =15 N =31 N=61

0 STAB(2, 1) 5.5 4.5 5.0
STAB(5, 1) 3.0 8.0 8.5
VPR 1.0 , 5 0.0
BDE 7.5 4.0 4.0
Chow" 3.5 4.5 5.0
1 STAB(2, 1) 3.5 5.0 3.0
STAB (5, 1) 5.5 9.0 4.5
VPR 5 0.0 0.0
BDE 6.0 3.5 3.5
Chow* 7.0 9.0 3.0
10 STAB(2, 1) 73.0 43.5 43.5
STAB(5, 1) 08.0[93.51® 87.0[98.0}* 76.5[76.5]°
VPR 93.0{91.0]* 48.0[73.01* 20.0[18.0]®
BDE 13.0 20.0 18.5
Chow* 100.0 95.5 97.5
Garbade VPR® 65.0 79.7 88.0
100 STAB(2, 1) 100.0 100.0 100.0
STAB(5, 1) 100.0 100.0 100.0
VPR 100.0 100.0 100.0
BDE 100.0 100.0 100.0
Chow* 100.0 100.0 100.0

“See note “a” for Table 1.
b Pigures in brackets are for an independent simulation using a different x, series.

°These results are quoted from Garbade (1977); they are discussed in the text below.

If the true power of a particular test is p, then the observed power, #, will be very
nearly normally distributed with variance p(1 - p)/200. The standard deviation of
the sampling errors in tables 1, 2, and 3 thus varies from 1.5% (forp = .05)to 3.5%
(for the worst case, p = .50). Since it seems likely that the sampling errors of the fi's
for the different tests are positively correlated, the standard errors of observed power
differences in these tables are probably less than (2)* (1.5% -3.5%), or 2% to 3%.
Thus an observed power difference of 10% might be termed “significant at the 5%
level” if both observed powers are close to .5, whereas an observed power difference
of only 4% would suffice if both tests have an observed power close to one or zero.

An examination of the simulation results for random walk parameter variation
(table 1) reveals that the BDE test isin every instance significantly less powerful than
the other tests. The Chow test (a special case of the STAB test with just two sub-
periods) was the most powerful test only for the weakest parameter variation
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(P = .01) and smallest sample size; even then it is not significantly better than the
STAB (5, 1) test. The STAB (5, 1) test appears to be significantly more powerful than
the VPR test for weak parameter variation, but the VPR test looks somewhat better
for strong parameter variation (P = 1.0), The STAB (2, 1) test does not appear to be
an improvement over the STAB (3, 1) test for random walk parameter variation.

The simulation results for stable markov processes {table 2) indicate that both the
BDE and the Chow tests are relatively weak; they perform comparably to the other
tests only when the parameter variation is so weak (P = .01} and the sample size so
small (N = 15,31) that none of the tests is very powerful. For weak parameter
variation and N = 61 the STAB tests are significantly more powerful than any of the
other tests. For moderate parameter variation (P = .10} the VPR and STAB tests are
roughly equivalent at N = 15 and the STAB tests appear to be significantly superior
for the larger sample sizes. As with the random walk case, the VPR test looks some-
what better than the STAB test for stronger parameter variation and the STAB (2, 1)
test does not appear to be an improvement over the STAB (5, 1) test.

The simulation results for the discrete jump case are presented in table 3. Here
none of the tests appear to be powerful for a very small jump (d = 1) and all of the
tests yielded 100% for an extremely large jump.

For a moderate jump the Chow test is clearly superior, as one might expect since it
is designed to detect this very type of parameter instability. [The Chow test would
appear even more powerful, except that, as implemented here, it assumes that the
jump takes place just after the midpoint of the sample (i.e., period 8 when N = 15)
whereas the actual jump takes place just before the midpoint (e.g., period 7 when
N = 15]. The BDE test is again weak relative to the other tests. The STAB (5, 1) testis
not significantly less powerful than the Chow test for N = 15, but it is significantly
less powerful for the larger sample sizes. The STAB (2, 1) test is distinctly less power-
ful than the STAB (5, 1) test in this case; clearly, this is an instance where the addi-
tional resolution provided by smaller, more numerous subperiods is superfluous and
merely wastes degrees of freedom. ‘

The VPR test appears to be rather weak in detecting discrete jump parameter
variation for the larger sample sizes. This result is due to the discrepancy between
the random walk parameter variation model on which the VPR test is based and the
actual pattern present in this case. The observed power of the VPR test falls as the
sample size increases for two reasons. For one thing, the size of the jump declinesas N
rises. Also, the larger samples have a larger number of pre-jump and post-jump
observations over which the parameter really is stable. Garbade (1978) reported
much more favorable results for the VPR test in the discrete jump case than were
observed in the present study. These are presented in table 3 (for d = 10) with the
label “Garbade VPR.” His results are puzzling. It is not possible to replicate them
because his x, data are not available. However, it was possible to replicate the results
presented here with an independently drawn set of x, and ¢, data. These results are
presented in brackets for the VPR and STAB(5, 1) tests in the d = 10 section of
table 3. Notice that the change in the x, s makes a substantial change in the figures for
the N = 31 simulation,5 but the relative pattern remains the same: the two tests are
roughly equivalent for small samples, and both eventually decline in power as the

5. Note that the true power of each test may depend on x, . . . x,, so it is not appropriate to compare
these shifts to the standard errors of 2-5% discussed above.
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sample size grows (and the jump shrinks), but the VPR test loses its power far more
quickly than does the STAB(5, 1) test.

These simulation results indicate that the VPR test is slightly more powerful for
detecting strong stochastic parameter variation and that the STAB tests are some-
what more powerful for detecting weak stochastic parameter variation. The STAB
tests are superior for detecting discrete jumps.

While a high order STAB test (e.g., the Chow test) is preferable for detecting a
single discrete jump, its advantage over the STAB (5, 1) test would disappear if there
were two jumps made during the sample period. The low order STAB tests
[STAB(2, 1) and STAB {5, 1)] were clearly superior to the high order STAB tests in
detecting stochastic parameter variation. Of the low order STAB tests, the
STAB (5, 1) test seemed to work just as well as the STAB (2, 1) test on the stochastic
variation cases and noticeably better on the discrete jump case, so the STAB(5, 1) test
appears to be preferable. Overall, the STAB (5, 1) test appears to be the most power-
ful test considered here, with the VPR test a close second.

IV. AN ILLUSTRATIVE APPLICATION

In this section, stabilogram analysis is applied to a bivariate forecasting model for
tpy., the quarterly growth rate in Texas personal income. Forecasts of tpy, are of
interest because a new constitutional amendment limits State appropriations for the
1982-83 biennium to v times the expenditures in 1980-81, where v is the accepted
forecast of the ratio of average Texas personal income in the 1982-83 biennjum to the
same average over the 1980-81 biennium. '

The forecasting model analyzed here was specified, estimated, and diagnosti-
cally checked using fairly standard time series analysis techniques based on the pre-
whitened cross-correlogram. [Details and data can be found in Ashley (1980}]. The
general idea was to relate fpy, to gnp, , the growth ratein U.S. GNP, so that commer-
cially available projections of gnp, could be used to obtain forecasts of tpy,
through 1983.

The bivariate model was quite simple:

tpy, = .001636 + .155tpy,, + .104tpy., + .285fpy,.,

{.52) {1.43) (.94) (2.88)
(4.1) '
+ A483gnp, +e, R* = .49
(4.29)
DW = 2,02

sample period  1961.2-1977.4

where the figures in parentheses are £ statistics. This equation passed its in-sample
diagnostic checks — i.e., ¢, appeared to be white noise uncorrelated with lagged,
pre-whitened gnp, . It also forecast satisfactorily over the post-sample period 1978.1
to 1979.4, reducing the root mean square error from .01290 (for a naive model based
on a constant growth rate assumption) to .00641.6

6. These forecasts were made using historical values for gnp,; the 1978.1 forecast was a one-step-
ahead forecast, the 1978.2 forecast was a two-step-ahead forecast, ete.
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Inshort, equation 4.1 appeared to be so satisfactory that I invited two colleagues
to apply the stabilogram test toit. [See C. C, Holt and ]. A. Olson (1980} for details.]
They chose to re-estimate equation 4.1 over the period 1960.1 to 1977.4 (obtaining
similar results) and partitioned this sample period into six equal subperiods of twelve
quarters each,

Their interest centered on the stability of the constant term and of the gnp, coeffi-
cient. The stabilogram test results for these two coefficients are presented in table 4
below. In both cases the null hypothesis of parameter stability can be rejected at the
5% level.”

TABLE 4

Stabilogram Test Results on
Coefficients in the tpy Model
for Sample Period 1960.1-1977 .4

Variable coefficient RSS URSS F{5,62)
constant .420 .004285 003080 4.85
gnp, .003 004285  .003076 4.87

The stabilogram for the gnp coefficient is plotted in figure 1; this plot indicates
that the gnp coefficient was substantially smaller in the 1960-62 subperiod (labelled
“81” in figure 1) than it was subsequently. The stabilogram for the constant term
- shows a similar pattern. These stabilograms suggest that either

(a) the coefficients shifted in the early part of the sample period,
or

(b) the coefficients are drifting randomly.

The first of these two hypotheses seemes the most plausible one a priori, because the
raw Texas personal income data from 1958 and 1959 had always locked a bit suspect
tome. (In fact, the reason that the sample pericd for equation 4.1 was set to begin in
1961.2 was so that differenced models using dependent variables lagged up to four
periods would never use any data prior to 1960.1.)

7. Note that the stabilogram test s only asymptotically exact here due to the la%ged dependent varia-
bles in equation 4.1. Also, the true significance level of the test is distorted by the fact that two separate
stabilogram tests are done on the same regression.
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FIGURE 1

Stabilogram on gnp, Coefficient
in tpy, Model

COEFFICIENT

I ] I 1 I 1
6l 64 ‘87 70 73 76

SUBPERIOD

Hypothesis (a) was tested by eliminating the first two subperiods (1960.1 to
1965.4) from the sample period. Stabilogram tests were then performed on both the
constant term and on the gnp, coefficient using the remaining four subperiods. The
resulting test statistics, distributed F(3,40) under the null hypothesis, were 3.55 for
the constant term and 5.64 for the gnp, coefficient. Thus, the null hypothesis of
stable coefficients is still rejected at the .5 % level. Evidently, the removal of the early
data enables the test to detect the more subtle parameter variation present in the
remainder of the sample period.
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Since eliminating the early data did notlead to a model with stable coefficients, it
seems likely that the coefficients in this model are drifting randomly throughout the
sample period. Holt and Olson (1980) have undertaken further analysis of equation
4.1 based on this assumption.

V. CONCLUSION

The simulations reported in section I1I above indicate that the stabilogram test
(STAB}) and the VPR test have approximately the same nominal power in detecting
random walk and stable markov process parameter variation, with STAB having an
edge for weak variation and VPR having an edge for strong variation. For discrete
jump parameter variation the stabilogram test seems clearly superior to the VPR test
except for very small samples where the two tests seem roughly equivalent in nomi-
nal power. . _

The sirnulations reported by LaMotte and McWhorter (1980) on a model with
twenty observations and random walk parameter variation indicate a noticeably
larger nominal power for the LM test than for the VPR test. It thus seems likely that
the LM test is more powerful than the stabilogram test for detecting stochastic
parameter variation. No doubt the stabilogram test is still the most powerful test for
detecting discrete jump parameter variation.

On the other hand, the LM test requires quite lengthy computations and the LM
test also provides no insight into the manner in which the coefficients vary, whereas
the STAB test does through the stabilogram itself. The application to a model for
Texas data in section [V demonstrates how essential this feature can be.

Moreover, even when the LM test does successfully detect parameter instability,
the resuiting conclusion — that the parameters are following a random walk — may
be quite misleading. This feature is particularly significant since my experience with
the stabilogram test suggests that economic data yields parameters that jump, shift,
and/or trend as often as they take random walks.

In addition, the stabilogram test is inexpensive and easy to perform using just a
standard regression package. It can be taught to everyone likely to need it as an
illustrative example of linear hypothesis testing. If the effective power of a statistical
test is defined as the nominal power multiplied by the probability that the test is
actually applied, it seems clear that the simple test proposed here is clearly superior
in terms of effective power to all tests that have been suggested so far.
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