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The Granger-causal relationship between the size and dispersion of fluctuations in sub-

components of the U.S. Consumer Price Index (CPI) is examined using both in-sample and out-

of-sample tests and data from January 1968 to December 2008.  Strong in-sample evidence is 

found for feedback between median inflation and price dispersion; the evidence for Granger-
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for the variety of price-level determination models in the literature are discussed. 
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I. Introduction 

The relationship between inflation and price dispersion has always been an important 

issue in macroeconomics. On the one hand, menu cost models, signal extraction models, and 

monetary search models have variously predicted a causal linkage from expected inflation, 

unexpected inflation, and inflation uncertainty to price dispersion. On the other hand, supply 

shock models argue that price dispersion can also have causal impacts on inflation. Surprisingly, 

while an overwhelming majority of the existing empirical work has examined the impacts of 

inflation on price dispersion, only limited research has been done on the potential reverse 

causality from price dispersion to inflation. 

Our contribution in this paper is to provide a thorough investigation of Granger causality 

between inflation and price dispersion in both directions, employing both in-sample and out-of-

sample Granger causality tests.  Distinct from previous studies, which use the mean and standard 

deviation as measures of inflation and price dispersion, we measure inflation with the median 

change in the weighted log-price and price dispersion using the interquartile range of the 

weighted log-price; this choice is sensible because the cross-sectional distribution of prices is fat-

tailed and skewed.  Our in-sample Granger causality tests find strong evidence for feedback 

between median inflation and price dispersion. The in-sample evidence also suggests that the 

Granger causality from median inflation to price dispersion is mainly at high frequencies, 

corresponding to inflation fluctuations with periods of less than 3 to 6 months. Using a variety of 

out-of-sample Granger causality tests, we find strong evidence that median inflation has 

significant predictive content for price dispersion and very little evidence for Granger causality 

running from price dispersion to median inflation.   
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The rest of the paper is organized as follows. Section 2 provides a brief review of the 

literature on the relationship between inflation and price dispersion. In Sections 3 and 4, we 

describe the data used here and review the in-sample and out-of-sample Granger causality tests. 

Section 5 reports empirical results from our Granger causality tests; Section 6 offers concluding 

remarks.  

II. Literature on Inflation and Price Dispersion 

The theoretical literature on the impact of inflation on price dispersion is primarily built 

upon three types of models: menu cost models, signal extraction models and monetary search 

models.  

In menu cost models (Sheshinski and Weiss, 1977, 1983; Rotemberg, 1983; Benabou, 

1988; Diamond, 1992; Ball and Romer, 2003), firms are assumed to follow an (S,s) price 

adjustment rule. That is, a firm holds its nominal price constant as rising inflation erodes the real 

price, until – when the real price hits the lower bound (“s”) – the firm adjusts its nominal price 

upward to restore the real price to the upper bound (“S”). Since firms are faced with different 

menu costs or firm-specific shocks, the (S,s) pricing policy can lead to staggered price changes 

in the economy.   Under this staggered nonlinear price setting rule, an increase in inflation tends 

to raise relative price dispersion.1 

In contrast to the menu cost models − which focus on expected inflation − the signal 

extraction models (Lucas, 1973; Barro, 1976; Hercowitz, 1981) emphasize the impacts of 

inflation uncertainty and unexpected inflation on price dispersion. According to the signal 

extraction models, higher inflation uncertainty and unexpected inflation make aggregate demand 
                                                            
1 In fact, any nonlinear dynamic pricing rule can induce a feedback relationship between mean/median inflation and 
price dispersion.  See Subramanian and Kawachi (2004, p. 79-80) for a similar argument in a different context. 
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shocks more unpredictable. Thus, firms respond less to all demand shocks (including 

idiosyncratic real demand shocks) with output adjustments, which, in turn, induce wider 

dispersion in relative prices.  

In the monetary search models (Peterson and Shi, 2004; Head and Kumar, 2005), the 

effect of inflation on price dispersion works through the channel of consumers’ search costs. On 

the one hand, higher expected inflation reduces the real value of fiat money and raises 

consumers’ reservation price levels; this increases firms’ market power and, consequently, price 

dispersion. On the other hand, widened price dispersion raises the gain from searching and 

thereby induces more consumer search, leading to a decrease in the dispersion of prices. In an 

environment of low inflation, a rise in inflation raises consumers’ search intensity, and the 

second effect dominates, resulting in a fall in price dispersion.  Where inflation rates are high, an 

increase in inflation dampens consumer’s search intensity, and the first effect dominates, leading 

to a rise in price dispersion.  

Compared to the abundance of theoretical work addressing the influence of inflation on 

the dispersion of prices, theories of the effect of price dispersion on inflation are more limited, 

coming mainly from the supply shock literature. Early studies – e.g., Tobin (1972) and Gordon 

(1975) – assume downward price rigidity and argue that, since nominal prices are rigid 

downward, an increase in price dispersion is inflationary.  Ball and Mankiw (1995) later model 

firm’s price-setting behavior under the New-Keynesian framework; they show that the skewness 

of price changes is positively associated with inflation and that larger price dispersion amplifies 

the effect of skewness on the inflation. Building upon the Ball-Mankiw model, Lourenco and 

Gruen (1995) further point out that the effect of price dispersion on inflation is contingent on the 



4 
 

level of expected inflation: price dispersion is inflationary when expected inflation is higher, but 

not so when expected inflation is lower. 

There are also a substantial number of empirical studies on the relationship between 

inflation and price dispersion. Notably, the majority of the existing empirical literature focuses 

almost entirely on the causal links from expected inflation, unexpected inflation and inflation 

uncertainty to price dispersion. Using different estimation methodologies, datasets and sample 

periods, these studies have variously found a positive effect, no effect, and even a negative effect 

of inflation on price dispersion.2  In contrast, few studies have explored the potential causality 

from price dispersion to inflation.  

Ashley (1981) tests for Granger causality between the CPI inflation and price dispersion 

in both directions by comparing the out-of-sample forecasting performances of univariate and 

bivariate time series models. He shows that inflation has predictive power for price dispersion 

but not vice-versa.3 (In a related study, Fischer (1982) estimates vector autoregressive models for 

the United States and finds that relative price variability is an important determinant of inflation 

in the US.)   

In this paper we provide a thorough investigation of the Granger causality between 

inflation and price dispersion (again in both directions), employing the latest kinds of both in-

sample and out-of-sample tests and also taking advantage of the substantial amount of additional 

sample data now available. 
                                                            
2 See, for example, Vining and Elwertowski (1976), Parks (1978), Reinsdorf (1994), Grier and Perry (1996), Parsley 
(1996), and Debelle and Lamont (1997). 
3 Ashley (1981) uses the mean and standard deviation as measures of inflation and price dispersion, respectively, 
and studies the Granger causality between these two variables over the period between January 1953 and June 1975 
using a single out-of-sample test. In this study we use the sample median and interquartile range as measures of 
inflation and price dispersion, respectively, and look at a different sample period (January 1968 to December 2008) 
with both in-sample and a variety of out-of-sample tests.  Despite the above differences, our findings with regard to 
the Granger  causality between inflation and price dispersion are consistent with those in Ashley (1981), but richer 
due to the longer sample period and to the substantially more sophisticated testing techniques now available.  



5 
 

. 

III. Measures of Inflation and Price Dispersion 

While the sample mean of cross-sectional price changes is a conventional measure of 

inflation, Bryan and Cecchetti (1994) and Bryan, Cecchetti and Wiggins II (1997) argue that the 

weighted median is a better measure of inflation than the sample mean when the cross-sectional 

distribution of price changes is skewed and fat-tailed. Thus, we first examine the skewness and 

kurtosis of the cross-sectional distribution of price changes.  

Using the 31 seasonally-unadjusted component price indices of the Consumer Price Index 

(CPI) that are available over the period from January 1968 to December 2008, we first compute 

the annualized monthly price growth rate as  

πit = 1200*ln(Pit/Pit-1)                                                                                                                    (1) 

where Pit is the price index of component i at time t.4 Next, we compute the skewness and 

kurtosis of the cross-sectional distribution of πit as 

ܵ௧ ൌ ∑ ௥೔೟ሺగ೔೟ିగ೟ሻయሾ∑ ௥೔೟ሺగ೔೟ିగ೟ሻమሿయమ  and  ܭ௧ ൌ ∑ ௥೔೟ሺగ೔೟ିగ೟ሻరሾ∑ ௥೔೟ሺగ೔೟ିగ೟ሻమሿమ                                                                           (2) 

where rit is the relative importance of component i at time t and ߨ௧ ൌ ∑ -௜௧.5 The crossߨ௜௧ݎ

sectional skewness (St) and kurtosis (Kt) are plotted against time in Figure 1. Several features are 

worth noting. First, the average skewness is close to zero (about 0.32) with a standard deviation 

                                                            
4 These consumer price index components are obtained from the Bureau of Labor Statistics – see Appendix for 
details. The selection of the components used here is based on the availability of data over the entire sample period. 
Here we use seasonally unadjusted data simply because the usual seasonal adjustment procedures involve two-sided 
filtering which mixes together the past and future of a time series. 
5 Relative importance figures for the 31 components of the CPI index are obtained from the Bureau of Labor 
Statistics. 
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of 1.89. While there is thus little skewness in the distribution of ߨ௧ on average over the entire 

period, the sample distribution of ߨ௜௧ across the 31 individual components in any given month is 

generally skewed. Second, the average sample kurtosis of ߨ௜௧ (of 8.82) is large compared the 

value (of 3) expected for a Gaussian variate, implying that the cross-sectional distributions of 

monthly price growth rates generally have fat tails; in particular, the weighted kurtosis across the 

31 components is in excess of 15 for about ten percent of the sample periods.  Because the cross-

sectional distributions of monthly CPI price growth rates across the components are generally 

skewed and fat-tailed, we follow Bryan and Cecchetti (1994) and Bryan, Cecchetti and Wiggins 

II (1997) and use the weighted sample median and interquartile range as our underlying 

measures of inflation and price dispersion, respectively, as these are the standard nonparametric 

measures of location and dispersion.6  Because a histogram of the weighted sample interquartile 

range time series is highly skewed, with a shape resembling that of a chi-squared distribution, its 

logarithm is analyzed − and denoted “price dispersion” – below. 

Figure 2 graphs the time paths of median inflation and price dispersion over the entire 

sample period (January 1968 to December 2008) using these measures. While there is a modest 

downward trend in median inflation, the price dispersion series generally fluctuates around a 

constant mean, with a couple of large spikes in the mid-1970s, the early 1980s and post-2005.7    

  

                                                            
6 Given a series of N observations, v1, v2, …, vN, ranked from the smallest to the largest, the weighted percentile for 
i-the observation is: ݈௜ ൌ ଵ଴଴஼ௌಿ ሺܥ ௜ܵ െ ௪೔ଶ ሻ, where ݓ௜ is the weight of the i-th observation, ܵܥே ൌ ∑ ௞ே௞ୀଵݓ , and 

ܥ  ௜ܵ ൌ ∑ ௞௜௞ୀଵݓ . To find the value v corresponding to a given percentile l, we first find the observation number j 
where ௝݈ ൑ ݈ ൑ ௝݈ାଵ and then calculate the value as ݒ ൌ ௝ݒ ൅ ௟ି௟ೕ௟ೕశభି௟ೕ ሺݒ௝ାଵ െ  .௝ሻݒ
7 The non-homgeneity in the variance of the median inflation variable evident in Figure 2a motivated some of the 
robustness checks described in Section 5.4 below but was, in the end, not problematic. 
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IV. Methodology 

 Sample Period Choices 

Section IV describes the in-sample and out-of-sample Granger-causality tests which are 

used here to investigate the causal relationship between median inflation and price dispersion. 

With regard to sample period selection, the first twelve observations (comprising the sample data 

for 1968) are reserved for creating lagged variables; the 300 sample observations from January 

1969 to December 1993 are used for model identification/estimation; and the remaining 180 

observations, over the period from January 1994 to December 2008, are reserved for analyzing 

the out-of-sample forecasting performance of the models.8 

Unrestricted and Restricted Models for the Two Time Series  

Table 1 reports the results on unit root tests with regard to both median inflation and price 

dispersion over the sample period. All three unit root tests, including the Augmented Dickey-

Fuller (ADF) test, Phillips-Perron test and Dickey-Fuller (DF) GLS test, suggest that the median 

inflation time series is trend stationary, whereas the price dispersion series is covariance 

stationary.  For this reason a time trend is included in the models formulated below for the 

median inflation series. 

To test for Granger causality from price dispersion to median inflation, we compare an 

unrestricted model of median inflation − which includes lags in price dispersion as explanatory 

variables − to a restricted model, in which lagged price dispersion variables are excluded. The 

change in the civilian unemployment rate is also included in both of these model specifications, 

                                                            
8 This may seem like quite a large out-of-sample period (with 180 observations total), but this choice reflects the 
importance we attach to out-of-sample versus in-sample testing.  Calculations in Ashley (2003) support the 
proposition that out-of-sample prediction period lengths in excess of 100 observations are worthwhile. 
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so as to control for potential Granger causality from changes in unemployment rate to both 

median inflation and price dispersion.9   

The unrestricted model for median inflation is thus specified as follows:  

௧ݕ ൌ ଴ߙ ൅ ݐߣ ൅ ∑ ௧ି௜௣௜ୀଵݕ௜ߙ ൅ ∑ ௧ି௝௤௝ୀଵݎݑ௝Δߚ ൅ ∑ ௧ି௞௥௞ୀଵݔ௞ߛ ൅  ௬௧                                        (1U)ߝ

where yt and xt are median inflation and price dispersion at time period t, respectively, and Δurt is 

the change in unemployment rate. The restricted model for median inflation takes the form: 

௧ݕ ൌ ଴ߙ ൅ ݐߣ ൅ ∑ ௧ି௜௣௜ୀଵݕ௜ߙ ൅ ∑ ௧ି௝௤௝ୀଵݎݑ௝Δߚ ൅  ௬௧                                                                 (1R)ߥ

In a similar fashion we also estimate unrestricted and restricted models for price 

dispersion and test for Granger causality from median inflation to price dispersion: 

௧ݔ ൌ ଴ߜ ൅ ∑ ௧ି௜௛௜ୀଵݔ௜ߜ ൅ ∑ ߮௝Δݎݑ௧ି௝௠௝ୀଵ ൅ ∑ ௧ି௞௦௞ୀଵݕ௞ߟ ൅  ௫௧                                                 (2U)ߝ

௧ݔ ൌ ଴ߜ ൅ ∑ ௧ି௜௛௜ୀଵݔ௜ߜ ൅ ∑ ߮௝Δݎݑ௧ି௝௠௝ୀଵ ൅  ௫௧                                                                         (2R)ߥ

The lag lengths in these models are chosen so as to minimize the Bayesian information 

criterion (BIC) over the (in-sample) estimation period; the resulting estimated models are 

summarized in Table 2. 

In-Sample Granger Causality Tests 

While in-sample tests are clearly susceptible to pre-test distortion due to data mining, 

they are a useful first step in the Granger causality analysis, subject to confirmation (or dis-

confirmation) via out-of-sample testing.  Such out-of-sample testing − described in Section IV 

                                                            
9 Seasonally un-adjusted monthly unemployment rate data are obtained from the Bureau of Labor Statistics. 
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below − both enhances the credibility of the in-sample results and also provides evidence that 

whatever effects founds are a “stable statistical regularity” over a substantially lengthier time 

period.  

This in-sample testing step amounts to the usual F-test of the null hypothesis that a group 

of variables enters the unrestricted model with coefficients of zero; in-sample testing based on 

Sims (1972) is also reported below and also amounts to an F-test on a group of model 

coefficients.  Testing for Granger causality dis-aggregated by frequency is described at the end 

of this section.  

 The in-sample test for Granger causality from price dispersion to median inflation is 

equivalent to testing the null hypothesis that the coefficients on the lagged values of the price 

dispersion variable entering the unrestricted model for the median inflation variable are all zero: 

a rejection of this null hypothesis indicates the existence of Granger causality running from price 

dispersion to median inflation.10  

Similarly, the in-sample test for Granger causality from median inflation to price 

dispersion is equivalent to testing the null hypothesis that the coefficients on the lagged median 

inflation variables entering the unrestricted model for the price dispersion variable are all zero: a 

rejection of this null hypothesis indicates the existence of Granger causality running from 

median inflation to price dispersion. 

                                                            
10 This test is, of course, only justified if the usual regression assumptions of homoskedastic and serially 
uncorrelated model errors are valid.  Here sufficient lags are added to the model so that the correlogram of the fitting 
errors is consistent with serially uncorrelated model errors and the fitting errors are tested for heteroskedastictiy 
using both the Breusch-Pagan-Godfrey test and the White test.  Because the homoskedasticity assumption is 
problematic, White-Eicker (robust) standard error estimates are used throughout.  
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The putatively ‘causing’ variables happen to enter the unrestricted models at only a single 

lag in the present instance.  Consequently, the usual F statistic for the in-sample test has only one 

degree of freedom in the numerator and is just the square of the estimated t ratio with which the 

variable in question enters the unrestricted model. 

In addition to the usual Granger causality test, we also implement the Sims (1972) 

causality test.  Specifically, we regress median inflation on the lags and leads of price dispersion 

and then test the proposition that there is no Granger causality from median inflation to price 

dispersion with an F test of the null hypothesis that all of the coefficients on the leads of price 

dispersion are equal to zero. Rejection of this null hypothesis indicates there is a Granger causal 

link running from median inflation to price dispersion. A Sims test for Granger causality from 

price dispersion to median inflation is implemented here in a similar fashion.  

We also assess the frequency dependence of the Granger causality between median 

inflation and price dispersion in the results reported below, by examining how the coefficient(s) 

on the putatively ‘causing’ variable(s) themselves vary across frequencies – i.e., across 

fluctuations in the ‘causing’ variable which are more (or less) persistent in nature.  A number of 

methods for such assessment have been proposed in the literature – e.g., Breitung and Candelon 

(2006), Lemmens, et al. (2008), and Ashley and Verbrugge (2009) – but only the latter method 

remains valid in the presence of feedback between the time series.  Because the in-sample results 

reported below in Section V indicate that feedback is likely present between median inflation and 

price dispersion, frequency dependence results are reported in Section V only for the Ashley and 

Verbrugge (2009) method.11 

                                                            
11 “Feedback” between xt and yt is the case where both xt fluctuations Granger cause future yt fluctuations and yt 
fluctuations Granger cause future xt fluctuations.  Because the Fourier transformation is a two-sided filter, it mixes 
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This method assesses the frequency dependence in a regression coefficient (on, for 

example, xt-1 in a model for yt) by decomposing the data on xt-1 into m components, each 

associated with a sinusoidal frequency which corresponds to the  reciprocal of the time period 

over which the fluctuations in this component tend to reverse themselves.  Thus, the low-

frequency (i.e., high period) components of xt-1 emphasize the highly persistent fluctuations in 

xt-1, whereas the high frequency (i.e., low period) components of xt-1 emphasize the fluctuations 

in xt-1 which resemble random noise. (This is precisely the distinction between fluctuations in 

temporary versus permanent income in macroeconomic consumption theory.)  The Ashley and 

Verbrugge (2009) method uses a backward-looking 36-month moving window to decompose the 

data on a monthly time series xt-1 into m=19 essentially uncorrelated components, corresponding 

to a zero-frequency (trend) component and 18 positive-frequency components, each of which 

corresponds to fluctuations with periods ranging from 2 to 36 months long.  These 19 

components precisely add up to xt-1, so one need only replace xt-1 by these 19 components and 

estimate a coefficient (and standard error) for each.12 

  

                                                                                                                                                                                                
together both past and future values of a time series.  Consequently, the application of frequency domain methods to 
data exhibiting feedback is fraught – see Ashley and Verbrugge (2007, Section 3.6) for a detailed exposition of this 
point.  
12 Windows software to easily perform this decomposition is available from the authors; see Ashley and Verbrugge 
(2007, 2009) for all of the analytical and calculational details.  But it is worth mentioning here that the problematic 
effects of possible feedback are eliminated by only ever using the last filtered observation obtained from a 36-month 
window moving through the data set; thus, the decomposition is effectively a one-sided filter. There are only 18 
possible non-zero frequencies possible with a 36-month long window (rather than 36 components) because the 
component related to the sine of each frequency can sensibly be aggregated with the corresponding cosine 
component.  Thus, it is feasible to estimate all 19 possible component coefficients with a typical monthly data set.   
On other hand, this does ‘use up’ 18 additional ‘degrees of freedom’  in the regression and 36 sample observations 
are consumed by the initial window.  Less importantly, fluctuations with periods in excess of 36 months cannot be 
distinguished from one another. 
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Out-of-Sample Tests for Improved Forecast Accuracy 

As Ashley et al. (1980) points out, an out-of-sample comparison of forecasting 

performance is more in the spirit of the definition of Granger causality.  The out-of-sample tests 

of Granger causality between price dispersion and median inflation used here are implemented in 

two steps. As a first step, we estimate both the restricted and unrestricted models for median 

inflation and for price dispersion. In the second step, we conduct formal statistical tests to 

examine whether the out-of-sample mean square forecast errors (MSFE) from the unrestricted 

models are smaller than those obtained using the restricted models.13  If the unrestricted model 

for median inflation turns out to be superior over the restricted model in terms of forecast 

accuracy, price dispersion is then said to have predictive power for median inflation; this is 

considered to be evidence for Ganger causality running from price dispersion to median 

inflation. Granger causality from median inflation to price dispersion is tested similarly.  

 Five out-of-sample tests are used here: the Granger-Newbold (GN) test, the Diebold-

Mariano (DM) test, Clark-West (CW) test, McCracken’s (MSE-F) test, and also the Clark-

McCracken (ENC-NEW) test. The first four of these are designed to test for equal mean squared 

forecast errors, while the last is a test for forecast encompassing.  Each of these tests is briefly 

described below. 

Granger and Newbold (1976) proposed a test based on the correlation between the sum of 

the restricted and unrestricted one-step-ahead forecast errors, xt = er,t + eu,t,  and their difference, 

zt = er,t – eu,t,  where er,t and eu,t are the out-of-sample forecast errors from the restricted and 

unrestricted models, respectively. This test was first implemented in Ashley, et al. (1980) and 
                                                            
13 As noted later in this section, we also test whether the out-of-sample forecasts obtained from the unrestricted 
model encompass those from the restricted one.  Per comments in Rogoff and Stavrakeva (2008), however, we do 
not give results based on this test a causal interpretation. 
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Ashley (1981), and superseded by a direct bootstrap test described in Ashley (1998); these later 

versions relaxed the assumption that the errors were serially uncorrelated.  In the direct bootstrap 

version of the test, a simple bivariate VAR (and the two corresponding univariate models) are 

estimated for er,t and eu,t, and the null hypothesis that E(er,t)/E(eu,t) equals to one is directly tested 

by re-sampling from the fitting errors of these estimated models.14   

Diebold and Mariano (1995) developed a test which also relaxes the assumption in the 

original version of the GN test that the forecast errors are serially uncorrelated. The Diebold-

Mariano (DM) test statistic is defined as ܯܦ ൌ ҧ݀/ඥܴܣܸܴܮሺ ҧ݀ሻ, where ҧ݀ ൌ ଵ௉ ∑ሾ݁௥,௧ଶ െ ݁௨,௧ଶ ሿ , P 

is the number of out-of-sample observations – here and below – and LRVAR(.) is the long-run 

variance function. 

Recent work has shown, however, that these older forecast accuracy tests can suffer from 

serious size distortion problems when the models being compared are nested.15 In particular, 

Clark and West (2006, 2007) point out that, under the null hypothesis of equal MSFE − i.e., 

where the restricted model is the actual data generating process − the unrestricted model is 

necessarily misspecified due to the inclusion of extraneous explanatory variables.  While the 

population coefficients on these variables are zero, their sample estimates will be non-zero, 

leading to an upward bias in the sample MSFE for the unrestricted model. To correct for this 

upward bias, Clark and West (2006, 2007) proposed the modified Diebold-Mariano test statistic, 

                                                            
14 This direct bootstrap version of this test explicitly allows for a substantial contemporaneous cross-correlation 
between the two forecast errors and also (through the VAR) for serial correlation, which might be present due to 
model misspecification.  It does not allow for heteroskedasticity in the errors, however: nowadays a wild bootstrap 
would be used, as implemented below.  It does, on the other hand, implement a double-bootstrap which roughly 
quantifies the uncertainty in the inference due to the bootstrap approximation itself, which is only justified for large 
samples.  Thus, this direct bootstrap test is preferable for short out-of-sample periods, whereas the kind of 
bootstrapping implemented here − for the GN test and the four others − is preferable for longer out-of-sample 
periods. See also footnote #15 below. 
15 See West(1996), Clark and McCracken (2001, 2005), and West (2006), and Clark and West (2006). 
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ܹܥ ൌ ܲଵ/ଶ భು ∑ሾ௘ೝ,೟మ ି௘ೠ,೟మ ାሺ௙መೝ,೟ି௙መೠ,೟ሻమሿ௅ோ௏஺ோሾ௘ೝ,೟మ ି௘ೠ,೟మ ାሺ௙መೝ,೟ି௙መೠ,೟ሻమሿ                                                                                           (3) 

where መ݂௥,௧ and መ݂௨,௧ are the out-of-sample forecasts from the restricted and unrestricted models, 

respectively.  They show that this test statistic is asymptotically a standard normal under the null 

hypothesis of equal MSFE for the two models, yielding a test with actual sizes close to but a 

little less than nominal size in finite samples.16 

Another reason for size distortions in the GN and DM tests when the competing models 

are nested is that the asymptotic distributions of these forecast accuracy test statistics are 

significantly non-normal in that case.  McCracken (2007)’s F-type test statistic,  

ܧܵܯ െ ܨ ൌ ܲ ∑ሺ݁௥,௧ଶ െ ݁௨,௧ଶ ሻ / ∑ ݁௨,௧ଶ .                                                                                          (4) 

is designed  to correct for size distortions from this source.  According to McCracken (2007), the 

asymptotic distribution of MSE-F is non-standard and depends on the forecasting scheme (fixed, 

rolling or recursive), the number of excess parameters in the nesting model, and also on the ratio 

of the number of out-of-sample observations to the number of in-sample observations.  On the 

other hand, Clark and McCracken (2001) and McCracken (2007) have shown that this test is 

more powerful than the Diebold and Mariano test when the models are nested.   

 We also apply the Clark and McCracken (2001) test of forecast encompassing in the case 

of nested models: 

ܥܰܧ െ ܹܧܰ ൌ ܲ ∑ሺ݁௨,௧ଶ െ ݁௨,௧݁௕,௧ሻ / ∑ ݁௕,௧ଶ                                                                                 (5) 

                                                            
16 This is for rolling forecasts; for forecasts calculated recursively, the limiting distribution of the CW statistic is a 
bit more complex; see Clark and West (2007) for details. Effectively, per Paye (2010), these tests are focusing on 
testing the underlying causal structure rather than simply testing whether the forecasts from one model are more 
accurate than those of a another, as in the direct bootstrap test of Ashley (1998) discussed in footnote #13 above. 
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where, as noted above, P is the number of out-of-sample observations. As pointed out by Rogoff 

and Stavrakeva (2008), forecast encompassing is arguably not quite the issue in testing for 

Granger-causality, because it focuses on testing whether the unrestricted model encompasses the 

restricted model rather than on whether the restricted model has smaller MSFE than the restricted 

one.  Consequently, results with respect to this test are reported here, but are not emphasized in 

the discussion.   

Bootstrap Implementation 

Concerns regarding potential finite-sample size distortions in all of these tests based on 

the claimed asymptotic distributions of their test statistics prompt us to in each case use bootstrap 

replications to compute p-values for rejecting the null hypothesis of equal out-of-sample 

forecasting effectiveness for the restricted and unrestricted models.  Simulated data for each of 

the three underlying time series (median inflation, price dispersion, and the change in 

unemployment rate) are generated by bootstrap re-sampling 3-vectors from the fitting errors of 

univariate autoregressive models for each of these variables.17  

Because – as reported in Section 5.1 below − heteroskedasticity is an issue in this data 

set, the re-sampling was done using the ‘wild’ bootstrap proposed by Goncalves and Kilian 

(2004).  Specifically, denoting the OLS fitting errors from the autoregressive models for median 

inflation, price dispersion, and the change in unemployment rate as τt, υt, and ωt, respectively, 

we draw a sequence of i.i.d. innovations εt, t = 1, 2, … T, from the standard normal distribution 

and use  εtτt, εtυt, and εtωt as the bootstrapped innovations to generate an artificial data set of 492 

                                                            
17 The autoregression for the aggregate inflation equation includes a linear trend, its first, second, third and twelfth 
lags. The relative price dispersion equation is modeled as an AR(3) process and the seasonal difference of the 
change in the unemployment rate is modeled as an AR(4) process.  These lag structures were chosen so as to 
minimize the BIC criterion. 
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observations.18  The restricted and unrestricted models are then re-estimated and the six test 

statistics (F, GN, DM, CW, MSE-F and ENC-NEW) are calculated for the new data set.  That 

completes one bootstrap replication.  A total of 5,000 such replications are done, and the p-value 

reported in Table 5 for each of the tests is computed as the proportion of the generated test 

statistic values exceeding the test statistic value reported in Table 5 as having been observed 

using the actual sample data.  

V.  Empirical Results 

In-Sample Model Estimation Results 

We report the in-sample estimates of the restricted and unrestricted models for median 

inflation in Panel A of Table 2 and those for price dispersion in Panel B of Table 2. Lag lengths 

are chosen so as to minimize the Bayesian Information Criterion (BIC), leading to fairly simple 

models.  Note that, because these are monthly time series which have not been subjected to 

seasonal adjustment, it is not odd to see terms included at lag twelve.   

The Breusch-Pagan-Godfrey test and the White test both provide strong evidence that the 

errors in the model for median inflation are heteroskedastic, whereas the errors in the model for 

price dispersion appear to be homoskedastic.  White-Eicker standard error estimates are therefore 

used throughout and the wild bootstrap is used in the re-sampling for the in-sample and out-of-

sample forecasting test statistics, as described in Section IV. 

In the unrestricted model for median inflation, the coefficient on the lagged price 

dispersion is highly significant, with a t-statistic of 2.9365, indicating strong in-sample predictive 

power of price dispersion for median inflation. In the unrestricted model for price dispersion, the 

                                                            
18 For simplicity, we fix the values of initial observations at their actual sample values. 
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coefficient on the lagged median inflation is also found to be statistically significant at the 1% 

level, with a t-statistic of 3.7763, suggesting strong in-sample predictive power of median 

inflation for price dispersion. 

With respect to the Sims test on causality from median inflation to price dispersion, we 

add leads of price dispersion to the unrestricted model for median inflation. The coefficients on 

the 12 leads of price dispersion are found to be jointly significant at the 0.01% level, with an F-

statistic of 3.3147 and p-value of 0.0002. We consider this to be strong in-sample evidence for 

Granger causality running from median inflation to price dispersion. Similarly, we implement a 

Sims test with regard to Granger causality from price dispersion to median inflation by including    

12 future values of median inflation in the unrestricted model for price dispersion and testing the 

null hypothesis that all twelve coefficients on the leads of median inflation are equal to zero; this 

null hypothesis is rejected at the 2% significance level. (The F-statistic = 2.1465 and the 

corresponding p-value is 0.0144.) Thus, the Sims causality tests confirm the result that there is 

feedback between median inflation and price dispersion. 

Similarly, the Ashley and Verbrugge (2009) frequency dependent regression method 

finds that, while the relevant coefficient estimates in the two models − with the lagged 

putatively-causing variable replaced by its 19 frequency-specific components − are individually 

significant at some frequencies, the overall Granger causality evidence in these models is not as 

strong as in the models reported on above, which ignore possible frequency dependence. In 

particular, Table 3 shows that the null hypothesis that all of the coefficients on the various 

frequency components of lagged median inflation in the price dispersion equation are zero 

cannot be rejected at even the 10% level of significance; and a similar result is quoted for the 

null hypothesis that all of the coefficients on the various frequency components of lagged price 
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dispersion in the equation for median inflation.  This result is not unexpected, in view of the fact 

that it is not very easy to reject a null hypothesis embodying 19 parameter restrictions, even 

when a number of these restrictions are false. 

On the other hand, restricting attention to just the high-frequency components of lagged 

median inflation, Table 3 shows that it is, in fact, possible to reject the null hypothesis that all of 

the coefficients on these  high-frequency components of lagged median inflation are zero in the 

price dispersion equation – with a p-value of either 0.03 or 0.04, depending on whether  “high-

frequency” is defined as “fluctuations with period less than or equal to 6 months” or 

“fluctuations with period less than or equal to 3 months.”  This result is illustrated in Figure 3, 

which plots the 19 coefficient estimates (along with the ±1 standard deviation bands) against the 

period-length for the fluctuations in lagged median inflation included in the corresponding 

component. These frequency-dependence results are hardly compelling, but they do suggest that 

– in the sample period, at least – the observed causality from median inflation to price dispersion 

is primarily a high-frequency relationship.  This is a useful insight if its credibility can be 

enhanced by finding unidirectional causality from median inflation to price dispersion in out-of-

sample testing. 

 Forecasting Results 

 Using these model specifications, we then obtain recursive one-step-ahead out-of-sample 

forecast errors from the restricted and unrestricted models for median inflation and price 

dispersion, respectively.  “Recursive,” in this context, means that the model parameters are up-

dated (re-estimated) using the additional data as the forecasting process moves through the out-

of-sample period.  The mean squared errors −  both in-sample and out-of-sample – are tabulated 



19 
 

and compared in Table 4 for the restricted and unrestricted models of median inflation (Panel A) 

and price dispersion (Panel B).  

We find that, over the in-sample period, including price dispersion in the median inflation 

equation reduces the MSE by about 3% while including median inflation in the price dispersion 

equation reduces the MSE by over 4%.  These results are, of course, consistent with the t-test 

results reported in Section V above.   

The out-of-sample mean squared forecast errors (MSFE) from the unrestricted model for 

price dispersion are similarly around 3% smaller than those from the restricted model for price 

dispersion.  In contrast, the unrestricted model for median inflation in fact provides less accurate 

forecasts than does the restricted model: its MSFE is actually 2% larger.  Thus, the strength of 

the out-of-sample evidence for Granger causality from median inflation to price dispersion 

hinges on whether this 3% drop in MSFE is statistically significant.  And  the existence (much 

less the strength) of the out-of-sample evidence for Granger causality from price dispersion to 

median inflation rests on whether corrections for nesting are sufficient to credibly reverse the 

impact of this rise in the realized out-of-sample MSFE for the unrestricted model of median 

inflation. 

Table 4 also reports estimates of the ratio, for each pair of models, of the MSE (or MSFE, 

using the out-of-sample period) to the sample variance of the time series (median inflation or 

price dispersion) being modeled.  It is shown in Ashley (1983) that a model for a variable zt that 

yields forecasts ̂ݖ௧ which are so poor that MSE(̂ݖ௧)/Var(zt) exceeds one renders zt useless as an 

input variable in models for forecasting other variables –  regardless of the size and significance 

with which zt enters those other models  −  if  ̂ݖ௧ will, in the end, be used to replace zt.  Reference 
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to Table 4 shows that simple point estimates of these ratios are less than one except for the out-

of-sample forecasts of aggregate inflation based on the unrestricted model, in which case the 

estimated ratio of the mean squared forecast errors to the variance of the median inflation 

variable itself is 1.0047.  This result is another reflection of the dismal out-of-sample forecasting 

performance of the unrestricted model for median inflation. 

In summary, there is strong in-sample evidence for Granger causality between these two 

time series in both directions.  The out-of-sample evidence for Granger causality running from 

price dispersion to median inflation is very weak, to say the least.  There is, however, out-of-

sample evidence for Granger causality running from median inflation to price dispersion.  The 

question is whether the out-of-sample forecasting improvement from including the median 

inflation time series in the model for price dispersion is statistically significant: that is addressed 

in the next section, using the tests described in Section IV. 

Results from the Forecasting-Based Granger Causality Tests 

Table 5 reports the results from both in-sample and out-of-sample tests of Granger 

causality between median inflation and price dispersion based on the relative forecasting 

effectiveness of the restricted versus unrestricted models for each time series.  The reported p-

values are for rejecting the null hypothesis of equal forecasting effectiveness, which corresponds 

to an absence of Granger causality running from the additional variable (or variables) included in 

the unrestricted model to the dependent variable in common to both models.  In all cases these p-

values are computed using the bootstrapped sampling distributions of the indicated test statistics, 

as described in Section IV. 
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In-sample F-test statistics and p-values are reported in the first row of Table 5. Since the 

p-values obtained are in both cases less than 0.005, both the null hypothesis of no Granger 

causality running from median inflation to price dispersion and the null hypothesis of no Granger 

causality running from price dispersion to median inflation can be rejected at the 0.5% 

significance level. If one is inclined to accept in-sample evidence as credible − which the authors 

are not − this would be strong evidence for bi-directional Granger causality (feedback) between 

these two time series. 

The next five rows of Table 5 report null hypothesis rejection p-values and test statistic 

values for each of the out-of-sample tests described in Section IV.   The left-most column is in 

each case reporting results for testing the null hypothesis that the out-of-sample forecast errors 

generated by the unrestricted model for the inflation series are no smaller than those generated 

by the restricted model, which excludes the price dispersion time series as an explanatory 

variable.  Thus, a small p-value – allowing rejection of this null hypothesis − is evidence in favor 

of Granger causality running from price dispersion to median inflation.   

Similarly, the right-most column is in each case reporting results for testing the null 

hypothesis that the out-of-sample forecast errors generated by the unrestricted model for the 

price dispersion series are no smaller than those generated by the restricted model, which 

excludes the median inflation time series as an explanatory variable.  Thus, a small p-value – 

allowing rejection of this null hypothesis − is evidence in favor of Granger causality running 

from median inflation to price dispersion. 

With regard to the null hypothesis ruling out Granger causality from price dispersion to 

median inflation, the results in the left-most column of Table 5 show that none of the out-of-
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sample test statistics is statistically significant at even the 10% level, except the Clark-

McCracken (ENC-NEW) encompassing test statistic, which is significant at the 2% level. (This 

latter test is actually addressing forecast encompassing rather than forecast accuracy; 

consequently – per Rogoff and Stavrakeva (2008) − this result is of doubtful relevance to the 

Granger causality between these two time series.) In brief, there is no substantive out-of-sample 

evidence for Granger causality from price dispersion to median inflation.  

The results are quite different with respect to Granger causality running from median 

inflation to price dispersion, however.  For this set of out-of-sample tests, the results given in the 

right-most column of Table 5 indicate that the null hypothesis (of no causality) can be rejected at 

the 0.5% level using the Clark-West (CW) and McCracken (MSE-F) test statistics, at the 5% 

level using the Diebold-Mariano (DM) test statistic, and at the 10% level using the Granger-

Newbold (GN) test statistic.  We consider this to be strong out-of-sample evidence for Granger 

causality running from median inflation to price dispersion.  

Robustness Checks  

In this subsection, we evaluate the robustness of our Granger causality findings in several 

ways.  First, additional control variables are allowed to enter both the restricted and unrestricted 

models, so as to diminish the chance that a fourth variable is driving the results.  (A third 

variable, the change in the unemployment rate is already included in both models.)  Second, so 

as to eliminate the possibility that our results might be driven by energy shocks impacting both 

time series, the analysis is repeated excluding three energy-related components from the 

construction of the median inflation and price dispersion series.  Third, we allow for a possible 

structural break in each model, so as to rule out the possibility that our results are an artifact of 
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this kind of model instability.  Finally, we examine the robustness of our results over time in two 

ways: by partitioning the out-of-sample period into six 30-month sub-samples and repeating the 

out-of-sample testing for each, and by repeating the out-of-sample testing over a rolling forecast 

period.  The results from these robustness checks are described below. 

First, to ensure that our results of feedback between median inflation and price dispersion 

are not driven by an omitted variable, we allow for the introduction of three additional 

explanatory variables into both the restricted and unrestricted forecasting models for median 

inflation and price dispersion. Panel A of Table 6 reports the test results allowing for the 

inclusion of the growth rate in the broad money supply (M2); Panel B reports the analogous 

results, allowing for the inclusion of the growth rate in the Index of Industrial Production (IP); 

Panel C reports the results when the change in 3-month treasury bill rate (TB3) are included.19  

The inclusion of these additional control variables does not alter our main results. All in-sample 

test statistics are significant at the 0.3% level, indicating strong in-sample evidence for bi-

directional Granger causality between median inflation and price dispersion. Regarding the out-

of-sample test statistics associated with the null hypothesis of no Granger causality from price 

dispersion to median inflation, only the ENC-NEW test statistic is statistically significant when 

the M2 growth rate is included; when the growth rate in IP or the change in 3-month treasury bill 

rate is included, only the CW and ENC-NEW test statistics are significant. Therefore, there is 

still only very limited evidence for Granger causality from price dispersion to median inflation. 

                                                            
19 The data on M2t, on IPt and on TB3t are both seasonally unadjusted and obtained from Board of Governors of the 
Federal Reserve System H.6, G.17 and H.15, respectively. The appropriate lag lengths with which these variables 
enter the models is determined by minimizing the BIC. The first lag of M2 growth is included in the forecasting 
models for median inflation while its 4th and 5th lags are included in the forecasting models for price dispersion. The 
1st and 12th lags of IP growth are included in the forecasting models for median inflation, and its 6th lag is included in 
the forecasting models for price dispersion. The first lag of TB3 is included in the forecasting models for median 
inflation and its second lag is included in the forecasting models for price dispersion. These estimation results are 
available upon request. 
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Relative to the tests for Granger causality from median inflation to price dispersion, however, we 

note that all of the out-of-sample test statistics are still highly significant, except for the test 

based on the GN test statistic, which remains statistically significant at least at the 10% level. In 

short, the Granger causality results reported in Section V are quite robust to the inclusion of any 

one of these additional covariates. 

Second, worried about the possibility that our Granger causality findings might be driven 

by energy shocks impinging on the two series at different relative lags, the analysis is repeated 

with the three (of thirty one, total) components which seem clearly energy-related omitted from 

the computation of the median and interquartile range of the of the monthly component-level 

growth rates.20  The test results from this exercise are given in Panel A of Table 7.  Again, there 

is still strong in-sample evidence for the feedback between the two series with the energy-related 

CPI components omitted.  With respect to the out-of-sample Granger causality tests, while the 

evidence for Granger causality running from median inflation to price dispersion is somewhat 

diminished, it remains quite strong; and there is now also some distinct evidence for price 

dispersion Granger-causing median inflation, based on the Clark-West (CW) and McCracken 

(MSE-F) test statistics. 

Third, we check to see if allowing for structural change in the models alters our results.  

Using Bai and Perron’s (1998, 2003) and Andrews’ (1993) procedures, we are able to identify a 

single structural break date in the coefficients of the unrestricted models for each variable.21 

Allowing for these structural shifts by including dummy variables on the coefficients yields the 

                                                            
20 See, for example, Fischer (1981) and Taylor (1981), for discussions of the likely effect of energy price shocks on 
the relationship between inflation and price dispersion.  The three CPI components excluded from the calculation of 
median inflation and price dispersion are “fuel oil & other fuels”, “gas & electricity”, and “motor fuel”. 
21 The break dates identified by Andrews’ supWald tests for the unrestricted aggregate inflation and  relative price 
dispersion regressions are 1981M05 and 1973M01, respectively; more details on these results are available upon 
request. 
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test results reported in Panel B of Table 7, which are not appreciably different from the 

corresponding test results in Table 5. 

Fourth, we examine the robustness of our out-of-sample test results to evaluating the 

forecasting effectiveness of the models over subsets of the full out-of-sample period.  In 

particular, we divide the out-of-sample period into six 30-month sub-samples and conduct out-

of-sample Granger causality tests for each. Panel A of Table 8 shows the testing results for 

Granger causality from price dispersion to median inflation. In general, we find very limited 

evidence for Granger causality from price dispersion to median inflation. In all six sub-samples, 

the GN and DM test statistics are not significant at the conventional levels at all; the CW and 

MSE-F statistics are significant at the 5% only in the first subsample period. Panel B reports the 

out-of-sample test results on Granger causality from median inflation to price dispersion. As 

compared to our previous results on Granger causality from median inflation to price dispersion, 

the results are now statistically weaker, but this is what one ought to expect using out-of-sample 

periods which are much shorter. While the DM and CW test statistics are not significant in any 

of the six subsamples, the GN test statistics are still significant at the 5% level in three 

subsamples, and the MSE-F test is still significant at the 1% level in two subsamples and at the 

5% level in another two.  Notably, however, none of the tests in Panel B rejects the null 

hypothesis (of no causality) in the final subsample, from July 2006 to December 2008. 

Finally, we examined the manner in which the p-values for the GN, DM, CW, and MSE-

F out-of-sample tests change as the starting month for the out-of-sample period is varied, 

beginning in January 1994.  Figure 4 graphs the bootstrapped p-values for each of these tests as a 
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function of this starting month; the horizontal line represents a p-value of 0.10.22  These plots 

confirm the stability over time of our Granger causality results with respect to price dispersion 

(not) Granger causing median inflation.  It also confirms the stability of our Granger causality 

results with respect to median inflation Granger causing price dispersion up until the middle of 

2004, but indicates − consistent with the results in Panel B of Table 8  −  that the relationship 

appears to diminish after that. 

All in all, these checks indicate that our results are very robust in general, but that the 

Granger causation of median inflation on price dispersion probably dwindled after mid-2004. 

VI. Conclusions 

In this study we apply both in-sample and out-of-sample Granger causality tests to 

examine the causal relationship between median inflation and price dispersion. Given the fact 

that the cross-sectional distribution of the weighted CPI component price growth rates is skewed 

and fat-tailed, we use the median and the logarithm of the inter-quartile range of these 

component growth rates as measures of inflation and price dispersion, respectively.  

Using a monthly dataset over the period January 1968 to December 2008, we find fairly 

strong in-sample evidence for bi-directional Granger causality – i.e., feedback – between median 

inflation and price dispersion. Absent confirmation of this feedback result via out-of-sample 

testing, however, we are somewhat skeptical of conclusions based solely on in-sample evidence, 

however, because it can easily be an artifact of the specification searches used in obtaining the 

                                                            
22 The p-value plot for the ENC-NEW encompassing test is omitted because its interpretation in terms of Granger 
causality is murky.  Qualitatively, for the test of price dispersion Granger-causing inflation, the ENC-NEW test p-
value hovers in the range 0.05 to 0.10 until starting months in mid-2000 and then became even larger.  For the ENC-
NEW test of inflation Granger causing price dispersion, the p-value plot remains well below 0.05 until the middle of 
2004 and then increases. 
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models.  Results from a variety of out-of-sample Granger causality tests show that there is scant 

evidence for Granger causality from price dispersion to median inflation. In contrast, the out-of-

sample tests strongly confirm the in-sample evidence for Granger causality running from median 

inflation to price dispersion. This evidence for uni-directional Granger causation from median 

inflation to price dispersion is very strong, at least until mid-2004.  These out-of-sample Granger 

causality results are qualitatively stable across a varied set of robustness checks. 

We also find modest in-sample evidence that the Granger causality running from median 

inflation to price dispersion is primarily a high-frequency phenomenon.  In other words, it 

appears to be inflation fluctuations with periods of less than six months in duration which are 

driving the fluctuations in price dispersion. 

Our results are thus not supportive of the theoretical models – Tobin (1972), Gordon 

(1975), Ball and Mankiw (1995), and Lourenco and Gruen (1995) – which predict Granger 

causation from price dispersion to inflation.  In contrast, our results do support the array of menu 

cost, signal extraction, and monetary search models (surveyed in Section 2) which predict 

Granger causation from inflation to price dispersion, although further work is needed in order to 

distinguish between them. 
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Appendix 

The 31 components of the consumer price index (CPI) include: cereal and bakery products, 
meats, poultry, fish and eggs, diary and related products, fruits and vegetables, other food at 
home, food away from home, alcoholic beverage, fuel oil and other fuels, gas and electricity, 
water, sewer and trash collection, household furnishings and operations, men’s and boys’ 
apparel, women’s and girls’ apparel, infants’ and toddler’ apparel, footwear, jewelry and 
watches, new vehicles, used cars and trucks, motor fuel, motor vehicle maintenance and repair, 
motor vehicle parts and equipment, motor vehicle insurance, public transportation, medical care 
commodities, medical care services, recreation, communication, tobacco and smoking products, 
personal care products, personal care services, education. 
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Figure 1. Weighted Skewness and Kurtosis of Cross-Sectional Price-Change Distribution: 
January 1968 to December 2008 

Panel A. Weighted Skewness  

 

Panel B. Weighted Kurtosis 
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Figure 2. Monthly Median Inflation and Price Dispersion: January 1968 to December 2008 

Panel A. Median Inflation 

 

Panel B. Price Dispersion  
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Figure 3. Parameter Estimates from the Frequency Dependence Regression of Price Dispersion 

 

Notes: Solid line indicates the point estimates of parameters. Dashed lines indicate the ±1 
standard deviation bands. 
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Figure 4. P-Values of Out-of-Sample Granger Causality Tests for Different Forecast Windows 

Panel A. Testing for Granger Causality from Price Dispersion to Median Inflation 

 

Panel B. Testing for Granger Causality from Median Inflation to Price Dispersion 

 

Note: The green line with bubbles indicates the p-values of the CW statistics. The orange line 
with triangles indicates the p-values of the DM statistics. The blue line with cross indicates the p-
values of the GN statistics. The purple line with squares indicates the p-values of the MSE-F 
statistics. All p-values are obtained using the bootstrap procedure described in Section 4.5.
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Table 1. Testing for Unit Roots in Median Inflation and Price Dispersion 

 Median Inflation Price Dispersion 

Augmented Dickey-Fuller (ADF) Test -4.2245*** -6.0275*** 

Phillips-Perron Test -6.9855*** --13.5826*** 

Dickey-Fuller (DF) GLS Test -4.1967*** -4.5650*** 

Notes: Unit root tests are applied to the sample period 1969M1~1993M12. Both intercept and 
trend are included in the unit root test for median inflation. Only intercept is included in the unit 
root test for price dispersion. Bayesian information criterion (BIC) is used to select lag length in 
the ADF and DF GLS tests. 2 lags are used in the ADF and DF-GLS tests for both series, and 1 
lag is used in the Phillips-Perron test for both series. The superscript *** indicates the 
significance level of 1%. 
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Table 2. In-Sample Model Estimates: January 1969 to December 1993  

Panel A. Dependent Variable: 
Median Inflation (yt) 

 Panel B. Dependent Variable: 
Price Dispersion (xt) 

 Restricted Unrestricted   Restricted Unrestricted 

constant 0.8527** 
(0.3745) 

-0.4510 
(0.5497) 

 constant 0.8246*** 
(0.1400) 

0.9215*** 
(0.1422) 

trend -0.0017 
(0.0011) 

-0.0021* 
(0.0011) 

 xt-1 0.2635*** 
(0.0541) 

0.2272*** 
(0.0538) 

yt-1 0.5226*** 
(0.0648) 

0.4981*** 
(0.0633) 

 xt-2 0.1067** 
(0.0520) 

0.0732 
(0.0534) 

yt-2 0.0498 
(0.0661) 

0.0389 
(0.0640) 

 xt-3 0.2144*** 
(0.0596) 

0.1656*** 
(0.0601) 

yt-3 0.2034*** 
(0.0694) 

0.1748*** 
(0.0661) 

 Δurt-12 0.1254*** 
(0.0404) 

0.1041*** 
(0.0390) 

yt-12 0.1057** 
(0.0465) 

0.0990** 
(0.0464) 

 yt-4  0.0282*** 
(0.0075) 

Δurt-6 -0.6961*** 
(0.1821) 

-0.6109*** 
(0.1817) 

    

xt-3  0.8611*** 
(0.2932) 

    

No. of Obs. 300 300  No. of Obs. 300 300 
Adj. R2 0.6273 0.6371  Adj. R2 0.2120 0.2430 
BIC 3.9180 3.9070  BIC 0.6651 0.6406 
BPG(χ2) 19.2830*** 22.7909***  BPG(χ2) 3.7227 3.5486 
White (χ2) 42.7917** 51.0438**  White (χ2) 8.4276 10.5101 
Durbin-Watson 1.9547 1.9592  Durbin-Watson 2.0866 2.0276 
Notes: Δurt denotes the change in the civilian unemployment rate from period t-1 to t.  Robust 
standard errors are reported in parentheses.  BPG denotes the Breusch-Pagan-Godfrey test 
statistic and White denotes the White test statistic. The superscripts ***, ** and * indicate 
significance at the 1%, 5%, and 10% levels, respectively. 
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Table 3. Results from Frequency Dependence Regression 

Null Hypothesis Dependent Variable: 
Price Dispersion (xt) 

Dependent Variable: 
Median Inflation (yt) 

H0: Coefficients on the 19 frequency-specific 
components are all zero. 

1.3445 
(0.2539) 

1.1493 
(0.3030) 

H0: Coefficients on the fluctuations with 
periods greater than or equal to 12 months are 
all zero. 

1.3450 
(0.2539) 

1.4671 
(0.2128) 

H0: Coefficients on the fluctuations with 
periods less than or equal to 6 months are all 
zero. 

1.9357** 
(0.0270) 

0.8475 
(0.6095) 

H0: Coefficients on the fluctuations with 
periods less than or equal to 3 months are all 
zero. 

2.1462** 
(0.0397) 

0.2529 
(0.9709) 

Notes: F-statistics are reported and their p-values are reported in parentheses.  The superscripts ***, 
** and * indicate that the null hypothesis can be rejected at the significance levels of 1%, 5% and 
10%, respectively. 
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Table 4. In-Sample Fit and Out-of-Sample Forecasting Results 

Panel A: Median Inflation (y)  
 Restricted Model (R) Unrestricted Model (U) 
In-Sample MSE 2.5781 2.5019 
In-Sample Variance(y) 7.0833 7.0833 
In-Sample MSE/Variance(y) 0.3640 0.3532 
In-Sample MSE-U/MSE-R 0.9704 
   
Out-of-Sample MSFE 1.3361 1.3649 
Out-of-Sample Variance(y) 1.3585 1.3585 
Out-of-Sample MSFE/Variance(y) 0.9835 1.0047 
Out-of-Sample MSFE-U/MSFE-R 1.0216 
 

Panel B: Price Dispersion (x)  
 Restricted Model (R) Unrestricted Model (U) 
In-Sample MSE 0.1035 0.0991 
In-Sample Variance(x) 0.1336 0.1336 
In-Sample MSE/Variance(x) 0.7747 0.7418 
In-Sample MSE-U/MSE-R 0.9575 
   
Out-of-Sample MSFE 0.1319 0.1285 
Out-of-Sample Variance(x) 0.1453 0.1453 
Out-of-Sample MSFE/Variance(x) 0.9078 0.8844 
Out-of-Sample MSFE-U/MSFE-R 0.9742 
Notes: The in-sample period is January 1968 to December 1993, which has a total of 300 
observations; the out-of-sample period is January 1994 to December 2008, which has a total of 
180 observations. MSE-R denotes the mean squared errors from the restricted model. MSE-U 
denotes the mean squared errors from the unrestricted model.   
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Table 5. Testing Granger Causality between Median Inflation and Price Dispersion 

 
H0: No Granger causality from 
price dispersion to median 
inflation. 

H0: No Granger causality from 
median inflation to price 
dispersion. 

In-Sample F-Test 8.6232*** 
(0.0040) 

14.2606*** 
(0.0002) 

Granger-Newbold (GN) Test -0.6096 
(0.4339) 

0.5145* 
(0.0780) 

Diebold-Mariano (DM) Test -0.7105 
(0.4631) 

1.2864** 
(0.0260) 

Clark-West (CW) Test 1.0748 
(0.1098) 

2.3591*** 
(0.0040) 

McCracken (MSE-F) Test -3.8032 
(0.9010) 

4.8704*** 
(0.0010) 

Clark-McCracken (ENC-
NEW) Test 

3.1990** 
(0.0132) 

5.2582*** 
(0.0004) 

Notes: Sample test statistics are reported and their p-values (obtained from the wild bootstrap 
procedure described in Section 4.5) are reported in parentheses.  The superscripts ***, ** and * 
indicate that the null hypothesis can be rejected at the significance levels of 1%, 5% and 10%, 
respectively. 
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Table 6. Including Additional Control Variables 

Panel A. Adding the Growth Rate of Money Supply 

 
H0: No Granger causality from 
price dispersion to median 
inflation. 

H0: No Granger causality from 
median inflation to price 
dispersion. 

In-Sample F-Test 9.8832*** 
(0.0026)

12.8911*** 
(0.0004) 

Granger-Newbold (GN) Test -0.7276 
(0.4939)

0.9035** 
(0.0370) 

Diebold-Mariano (DM) Test -0.8683 
(0.5299)

1.6373*** 
(0.0086) 

Clark-West (CW) Test 0.9660 
(0.1298)

2.5906*** 
(0.0036) 

McCracken (MSE-F) Test -4.8124 
(0.9382)

5.8670*** 
(0.0006) 

Clark-McCracken (ENC-
NEW) Test 

2.9751** 
(0.0206)

5.5658*** 
(0.0010) 

 

Panel B. Adding Industrial Production Growth 

 
H0: No Granger causality from 
price dispersion to median 
inflation. 

H0: No Granger causality from 
median inflation to price 
dispersion. 

In-Sample F-Test 12.0872*** 
(0.0006)

8.6703*** 
(0.0032) 

Granger-Newbold (GN) Test -0.4951 
(0.3981)

0.8822** 
(0.0360) 

Diebold-Mariano (DM) Test -0.5691 
(0.4177)

1.6923*** 
(0.0096) 

Clark-West (CW) Test 1.5179** 
(0.0480)

2.5607*** 
(0.0038) 

McCracken (MSE-F) Test -3.6125 
(0.9024)

5.6536*** 
(0.0010) 

Clark-McCracken (ENC-
NEW) Test 

5.2400*** 
(0.0020)

4.9383*** 
(0.0008) 
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Panel C. Adding the Change in 3-month Treasury Bill Rate 

 
H0: No Granger causality from 
price dispersion to median 
inflation. 

H0: No Granger causality from 
median inflation to price 
dispersion. 

In-Sample F-Test 10.0639*** 
(0.0018)

16.0604*** 
(0.0002) 

Granger-Newbold (GN) Test -0.6534 
(0.4665)

0.5144* 
(0.0748) 

Diebold-Mariano (DM) Test -0.7474 
(0.4859)

1.2403** 
(0.0292) 

Clark-West (CW) Test 1.1224* 
(0.0994)

2.3468*** 
(0.0060) 

McCracken (MSE-F) Test -4.2920 
(0.9294)

4.7889*** 
(0.0028) 

Clark-McCracken (ENC-
NEW) Test 

3.5223** 
(0.0146)

5.3411*** 
(0.0004) 

 

Notes: Sample test statistics are reported and their p-values (obtained from the wild bootstrap 
procedure described in Section 4.5) are reported in parentheses.  The superscripts ***, ** and * 
indicate that the null hypothesis can be rejected at the significance levels of 1%, 5% and 10%, 
respectively. 
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Table 7. Additional Robustness Checks  

Panel A. Excluding Energy Prices 

 
H0: No Granger causality from 
price dispersion to median 
inflation. 

H0: No Granger causality from 
median inflation to price 
dispersion. 

In-Sample F-Test 6.1508*** 
(0.0016)

14.0184*** 
(0.0070) 

Granger-Newbold (GN) Test 0.2374 
(0.1142)

0.1539 
(0.2649) 

Diebold-Mariano (DM) Test 0.2623 
(0.1174)

2.3753** 
(0.0340) 

Clark-West (CW) Test 2.5577*** 
(0.0066)

3.5810** 
(0.0146) 

McCracken (MSE-F) Test 2.1305** 
(0.0448)

11.0255*** 
(0.0062) 

Clark-McCracken (ENC-
NEW) Test 

10.7474*** 
(0.0002)

9.3605*** 
(0.0042) 

 

Panel B. Allowing for Structural Breaks 

 
H0: No Granger causality from 
price dispersion to median 
inflation. 

H0: No Granger causality from 
median inflation to price 
dispersion. 

In-Sample F-Test 5.4364*** 
(0.0048)

8.4283*** 
(0.0020) 

Granger-Newbold (GN) Test -0.1004 
(0.2196)

0.6590* 
(0.0560) 

Diebold-Mariano (DM) Test -0.0709 
(0.2096)

1.7605*** 
(0.0062) 

Clark-West (CW) Test 1.2733* 
(0.0728)

2.5754*** 
(0.0028) 

McCracken (MSE-F) Test -0.3427 
(0.2595)

5.7896*** 
(0.0012) 

Clark-McCracken (ENC-
NEW) Test 

3.1778** 
(0.0204)

5.0384*** 
(0.0010) 

Notes: Sample test statistics are reported and their p-values (obtained from the wild bootstrap 
procedure described in Section 4.5) are reported in parentheses.  The superscripts ***, ** and * 
indicate that the null hypothesis can be rejected at the significance levels of 1%, 5% and 10%, 
respectively. 
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Table 8. Out-of-Sample Granger Causality Tests over Six 30-Month Sub-samples  
Panel A. Testing for Granger causality from price dispersion to median inflation 

Subperiod Granger-
Newbold (GN)  

Diebold-Mariano 
(DM)  

Clark-West (CW)  McCracken (MSE-F) Clark-McCracken 
(ENC-NEW)  

1994M01~1996M06 0.6307 
(0.1160) 

0.7351 
(0.1568) 

1.9634** 
(0.0316) 

1.8690** 
(0.0178) 

2.6257*** 
(0.0032) 

1996M07~1998M12 -2.0146 
(0.9436) 

-1.4661 
(0.8264) 

-0.7814 
(0.7127) 

-5.8527 
(0.9950) 

-1.2687 
(0.9760) 

1999M01~2001M06 0.0470 
(0.3579) 

0.4520 
(0.2484) 

1.0982 
(0.1422) 

1.0028* 
(0.0592) 

1.2493** 
(0.0204) 

2001M07~2003M12 0.4713 
(0.2302) 

0.5213 
(0.2631) 

1.0521 
(0.1600) 

0.6631* 
(0.0614) 

0.7550** 
(0.0184) 

2004M01~2006M06 -0.6077 
(0.5799) 

-0.4620 
(0.5159) 

0.1808 
(0.3817) 

-1.4994 
(0.9226) 

0.3055 
(0.1978) 

2006M07~2008M12 -1.2022 
(0.7630) 

-1.1355 
(0.7830) 

-0.6001 
(0.6399) 

-1.8756 
(0.9852) 

-0.5743 
(0.9628) 

 
Panel B. Testing for Granger causality from median inflation to price dispersion 

Subperiod Granger-
Newbold (GN) 

Diebold-Mariano 
(DM) Clark-West (CW) McCracken (MSE-F) Clark-McCracken 

(ENC-NEW) 
1994M01~1996M06 -0.4917 

(0.5333) 
0.6746 

(0.2012)
1.2556 

(0.1068)
0.6484* 
(0.0696)

0.5157* 
(0.0506)

1996M07~1998M12 0.3519 
(0.2178) 

1.0264 
(0.1322) 

1.0771 
(0.1344) 

1.4934*** 
(0.0098) 

1.0148*** 
(0.0078) 

1999M01~2001M06 1.2974** 
(0.0392) 

0.1722 
(0.3303) 

0.8348 
(0.1874) 

0.4441 
(0.1256) 

1.1686** 
(0.0156) 

2001M07~2003M12 1.9682** 
(0.0164) 

0.4690 
(0.2464) 

1.2550 
(0.1078) 

1.0425** 
(0.0426) 

1.6456*** 
(0.0066) 

2004M01~2006M06 0.7538* 
(0.0830) 

0.7718 
(0.1822) 

1.1130 
(0.1350) 

1.1611** 
(0.0222) 

0.9888** 
(0.0116) 

2006M07~2008M12 0.4271 
(0.1656) 

-0.1614 
(0.4151) 

0.3019 
(0.3217) 

-0.2681 
(0.6951) 

0.2367 
(0.1566) 

Notes: Sample test statistics are reported and their p-values (obtained from the wild bootstrap procedure described in Section 4.5) are reported 
in parentheses.  The superscripts ***, ** and * indicate that the null hypothesis can be rejected at the significance levels of 1%, 5% and 10%, 
respectively. 


