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Abstract

Two types of state-switching models for U.S. real output have been proposed: models that switch
randomly between states (as in Hamilton (1989)) and models that switch states deterministically, 
as in the threshold autoregressive model of Potter (1995).   These models have been justified
primarily on how well they fit the sample data, yielding statistically significant estimates of the
model coefficients. Here we propose a new approach to the evaluation of an estimated nonlinear
time series model which provides a complement to existing methods based on in-sample fit or on
out-of-sample forecasting.  In this new approach, a battery of distinct nonlinearity tests is applied
to the sample data, resulting in a set of p-values for rejecting the null hypothesis of a linear
generating mechanism.  This set of p-values is taken to be a “stylized fact” characterizing the
nonlinear serial dependence in the generating mechanism of the time series. The effectiveness of
an estimated nonlinear model for this time series is then evaluated in terms of the congruence
between this stylized fact and a set of nonlinearity test results obtained from data simulated using
the estimated model.  In particular, we derive a portmanteau statistic based on this set of
nonlinearity test p-values which allows us to test the proposition that a given model adequately
captures the nonlinear serial dependence in the sample data.  We apply the method to several
estimated state-switching models of U.S. real output.
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1. Introduction

In the 1970s and 1980s a time series like U.S. real output would typically be modeled as

linear function of its own past, using an ARMA or VAR framework.  By the 1990's, however, it

was widely recognized that nonlinear serial dependence is an essential feature in such time series.

Stimulated by contributions from Tong (1983) and Hamilton (1989), this nonlinear serial

dependence was (and remains) most commonly modeled using state-switching (or “regime-

switching”) models. 

In Tong’s threshold autoregression (TAR) framework, the time series switches

deterministically from one linear autoregressive model to another based on the lagged value of an

observed variable, with the parameters (including the threshold value at which switching occurs)

estimated via nonlinear least squares.  In Hamilton’s Markov switching framework, the time

series switches from one linear autoregressive model to another at random, with the parameters

(including the state transition probabilities) typically estimated via maximum likelihood

methods.    Each framework, of course, has been elaborated in various ways.  In both

frameworks, however, the adequacy of the model is primarily predicated on the statistical

significance of the relevant coefficient estimates relative to their asymptotic standard error

estimates – in essence, the model is accepted because it fits the sample data reasonably well and

because more elaborate parameterizations do not materially improve the fit.

Here we use a new model validation approach to examine whether published

implementations based on either of these frameworks is adequate to explain the observed

nonlinear serial dependence in U.S. real output.  The new approach is described in the next

section.  It takes the pattern with which a battery of distinct tests for nonlinear serial dependence
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reject the null hypothesis of linear serial dependence as a new “stylized fact” about the time

series and examines the degree to which a particular estimated nonlinear model for the time

series is capable of reproducing this pattern.  The set of nonlinearity tests used here is described

in Section 3.  In Section 4 these tests are used to generate this new “stylized fact” about U.S. real

output; four estimated models for U.S. real output are then described and subsequently analyzed

using the new approach.  Two of these estimated models (due to Lam (1997)) are Markov state-

switching models; one assumes fixed state-transition probabilities (as in Hamilton (1989)) and

the other assumes that the transition probabilities depend on how long the economy has been in

that state.  The other two estimated models are deterministic state-switching models.  The first of

these is a threshold autoregressive model for U.S. real output estimated by Potter (1995); the

second of these is a “smooth transition autoregressive” or “STAR” variation on this model (as in

Teräsvirta, T. and H. Anderson (1992)), in which the economy switches smoothly from one

linear model to another based on the lagged value of real output.  

The approach proposed here – in contrast to that of Harding and Pagan (2002), for

example – yields a statistical test of the proposition that a particular model generated the

observed sample data.  Applying the new approach to the four models of U.S. real output noted

above, this test indicates that the estimated STAR and Markov switching models are broadly

consistent with the results obtained from applying the battery of nonlinearity tests to the sample

data, but allows us to reject the threshold autoregressive specification at the 5% level.
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2.  A New Approach for Evaluating Nonlinear Time Series Models

Here we introduce a new approach for evaluating the effectiveness of an individual

nonlinear model of a times series or for comparing the effectiveness of two such models.  In this

section we first discuss the need for this new methodology.  Existing methods are then briefly

reviewed, after which the new approach is described, along with some of its advantages as a

complement to existing methods.  This new technique is then applied in Sections 3 and 4 to

evaluate the effectiveness of several state-switching models for U.S. real output.  

a. Why evaluation of nonlinear time series models is important.

The proposition that efficient parameter estimation and valid statistical inference hinge

crucially on appropriate model specification is hardly controversial.  Further, ample theoretical

and empirical evidence indicates that nonlinear generating mechanisms are important in a

number of macroeconomic and financial processes.  

For example, many theoretical macroeconomic models are highly nonlinear, from Hicks’

(1950) elaboration of the Samuelson multiplier-accelerator theory, to Grandmont’s (1985)

overlapping generations model, to labor hoarding models such as Hall (1990), and to recent

models, such as Palm and Pfann (1997), which are based on an explicit treatment of asymmetric

adjustment costs.  The nonlinearity in these models is intrinsic to the macroeconomic hypotheses

embodied in them and is essential to the derivation of the key properties these models display,

such as asymmetric business cycles and chaotic dynamics – see Barnett and Hinich (1992) and

Barnett, et al. (1995).

Moreover, numerous empirical studies have found statistical evidence for significant

nonlinearity in the generating mechanisms of important macroeconomic and/or financial time
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series.  Examples include Engle (1982), Tong (1983), Hinich and Patterson (1985), Tsay (1986),

Ashley and Patterson (1989), Hamilton (1989), Brock, Hsieh and LeBaron (1991), Potter (1995),

and Altug, Ashley and Patterson (1999) among many others.  Some of these studies have simply

detected nonlinearity in a particular time series S e.g., Ashley and Patterson (1989).  Other

studies S e.g., Hamilton (1989) and Potter (1995) S assume at the outset that the nonlinearity

takes a particular form and estimate an explicit model for the nonlinear serial dependence.  

Despite several attempts – e.g., Priestley (1988) and Gallant and Nychka (1987) – the

field of nonlinear time series analysis lacks a widely accepted model identification algorithm

analogous to that proposed by Box and Jenkins (1976) for linear processes.  Consequently, it is

entirely possible for each of several research groups to start with the same time series data and

produce substantially different models to represent its true generating mechanism, simply

because each group begins from a different assumption as to the family of nonlinear processes

that generated the data.  

For example, one group might assume that the true generating mechanism is a threshold

autoregression, whereas the other group might assume a Markov switching mechanism.  The

resulting fitted models will be quite different from one another, so they can’t both be correct.  

In fact, one or neither specification might be reasonably close to the correct data

generating mechanism.  How can one objectively assess the relative and absolute value of these

models as approximations to the true generating mechanism? 
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b. Existing approaches for evaluating time series models.

A common approach is to ask which model fits the data best, based on Rc
2, FPE, AIC,

BIC, etc. Sample fit is important, but since the sample data are customarily (and necessarily)

mined to identify the particular form of whatever kind of model is being considered, the fact that

the resulting model fits the data well usually reflects the flexibility of the framework being used

(threshold autoregressive, Markov switching, neural net, or whatever) more than it does which

kind of model is closer to the specification which actually generated the data.

Another approach relies on relative out-of-sample forecasting effectiveness as a criterion

for model choice.  Out-of-sample forecasting can give substantially credible support to a

particular model or to one model specification over another.  But the results from this approach

can be idiosyncratic to the particular model validation period chosen unless the hold-out sample 

is lengthy, in which case an insufficient number of observations may remain for model

specification and estimation.  (In particular, on might expect that an adequate postsample forecast

period for evaluating a state switching model would need to be sufficiently long as to include a

number of state switches.)  Quite often, moreover, one finds that neither of two candidate

nonlinear time series models provides out-of-sample forecasts which are very useful; in such

cases it seems unreasonable to prefer one model over the other on this basis. Such poor out-of-

sample forecasting can arise because both model specifications are totally inadequate, but it can

also reflect the fact that forecasts from nonlinear models are very sensitive to even modest model

mis-specification.  In other words, it might be the case that one model is far closer to the true data

generating mechanism in the ways we most care about, yet neither model is close enough to

forecast out-of-sample creditably well.
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c. A new approach

Here we introduce a new approach – complementary to the “sample fit” and “out-of-

sample forecasting” approaches outlined above – for either evaluating an individual nonlinear

times series model or comparing two such models.  Our approach is based on a battery of distinct

nonlinearity tests.  

We briefly discuss a selection of nonlinearity tests in Section 3; more complete

descriptions are given in Appendix 1.  The reason that there are so many tests (and the reason

that no comprehensive model identification algorithm for nonlinear models has found

widespread acceptance) is that there are many distinctly different ways in which the current value

of a time series can depend nonlinearly on its own past.  Consequently, many tests for

nonlinearity can be constructed, each focusing on a different aspect or effect of nonlinear serial

dependence – e.g, one test might focus on the way nonlinear serial dependence impacts the

higher order moments of the time series, whereas another test might look at how close different

sequential m-tuples of the process are to each other.  Thus, some nonlinearity tests will naturally 

be substantially more powerful than others against specific alternatives.

Our approach leverages this diversity by taking the pattern of p-values with which a set of

nonlinearity tests rejects the null hypothesis of a linear generating mechanism for a particular

times series as a new stylized fact characterizing the nonlinear serial dependence in this time

series.  One can then ask of any estimated model for this time series, “How well does it

reproduce this stylized fact?”  

Thus, our approach is similar in spirit to the more descriptive examination by Harding

and Pagan (2002) of how well a statistical model is able to track specific features of the shape of
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the business cycle.  Indeed, if one includes explicitly shape-related tests – e.g., the tests for

steepness and depth proposed by Ramsey and Rothman (1996), Verbrugge (1997), and others –

in the set of nonlinearity tests considered, then our approach subsumes and extends theirs.

One could simulate data from the estimated model and compute the power of each

nonlinearity test to reject the null hypothesis of a linear generating mechanism against this

particular alternative generating mechanism.  If the estimated model is effective at modeling the

nonlinear serial dependence in the actual data, then one would expect that the tests which are

most powerful in detecting this alternative are the ones which reject the null hypothesis with the

lowest p-values using these data.  In contrast, if the tests which provide the strongest evidence for

nonlinearity are ones with relatively small power to detect the kind of nonlinearities generated by

this model, it seems less plausible that the actual generating mechanism for these data is of this

kind.

Our approach takes this reasoning one step further, allowing us to construct a statistical

test of the proposition that a specific nonlinear model is capturing the nonlinear serial

dependence in the data, as distinct from merely fitting the sample data well in a least squares

sense.

Suppose that r nonlinearity tests have been applied to the sample data, yielding r p-values

 for rejection of the null hypothesis of a linear generating mechanism for the time

series.  Consider, then, a “portmanteau” test statistic quantifying the discrepancy between this set

of results and the set of p-values one might expect had the sample data been generated by this

specific model:
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Note that the expectation in this expression is taken over the joint distribution of the r-vector 

   This vector is a random variable because the p-value for each of the r nonlinearity

tests is a monotonic transformation of the test statistic for that particular nonlinearity test.  Thus,

for example, one might expect the inverse error function of a p-value from the BDS test to be

asymptotically a unit normal under the (counterfactual) supposition that the data were serially

independent.

Both this expectation and the sampling distribution of the AP test statistic are readily

obtained by monte carlo simulation under the null hypothesis that the sample data are generated

by any particular model – indeed, these simulations are already done in calculating the power of

the individual nonlinearity tests for this model.  The p-value at which one can reject this null

hypothesis is thus just the fraction of these simulations which yields AP values in excess of

Note that the r nonlinearity tests used in the AP test statistic defined above need not be in

any sense optimal.  In fact, the result of a given nonlinearity test is potentially an informative

feature of a “stylized fact” characterizing a particular time series whenever the power of this

nonlinearity test against the particular generating mechanism being considered differs

substantially from this test’s power to detect the kind of nonlinear serial dependence actually

present in the time series.  In particular, even a nonlinearity test with low power to detect the

nonlinear serial dependence actually present in the sample data can be very informative in our

framework.   For example, suppose that a threshold autoregressive (TAR) model has been

proposed and estimated for a particular time series and that it is found that this nonlinearity test

has very high power to detect the nonlinear serial dependence generated in data simulated from

this particular TAR model.  If – as is likely –  this nonlinearity test fails to reject its null
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hypothesis using the sample data, then it would be generating potentially substantial evidence

against the proposition that the proposed TAR model is an adequate approximation to the actual

generating mechanism for this time series.  

Note also that this testing procedure does not depend on a detailed knowledge of how the 

estimated model was obtained.  Our method is therefore applicable to models which have been

estimated by intricate (or even proprietary) methods, so long as one can either simulate the

estimated model oneself or obtain a long realization from someone who can and has.

Thus, the results from this new approach

C are not systematically distorted by the relative or absolute amount of specification

search (data mining) available or utilized in the production of either model, since

the approach is based on the estimated model’s ability to replicate the nonlinearity

properties observed in the sample data rather than on its ability to fit the sample

data in a least squares sense,

C do not require specification of a “hold-out” sample for model validation and do not

hinge on the ability of either model to successfully forecast outside of its

specification/estimation period,

and

C do not require re-estimation of the model – all that is required is a sufficiently long

simulated realization.

d. Plan of the rest of the paper.

The particular selection of nonlinearity tests used in this paper is briefly described in

Section 3; there we present power estimates indicating that these tests are distinct from one

another in the sense that at least some of them have differing relative power to detect commonly
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considered nonlinear processes.  In Section 4 the new approach described in this Section is

applied to evaluate the effectiveness of several state-switching models for U.S. real output.

3. A Selection of Nonlinearity Tests

The six nonlinearity tests used below are listed and briefly described in Table 1 and

below; since these tests are well known, more complete descriptions are given in Appendix 1.

Table 1
Nonlinearity Tests Considered

Test Focus Reference

McLeod and Li ARCH/GARCH McLeod and Li (1983)

Engle LM ARCH/GARCH Engle (1982)

BDS General serial dependence
 Brock, Dechert, and
Scheinkman (1996)

Tsay Quadratic terms (time domain) Tsay (1986)

 Hinich Bicovariance 3d order moments (time domain)
 Hinich and Patterson (1995)

and Hinich (1996)

Hinich Bispectrum 3d order moments (frequency domain)  Hinich (1982)

With the exception of the Hinich Bispectrum test, each of these procedures is actually

testing for serial dependence of any kind, whether linear or nonlinear.  Consequently, data pre-

whitening is necessary prior to the application of each of these tests, in order to eliminate any
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linear serial dependence in the data.  Since each of these tests is only asymptotically justified,

bootstrapping is in each case also necessary in order to obtain a correctly sized test.  These issues

have been dealt with elsewhere – e.g. in Patterson and Ashley (2000) – and hence are

summarized here in Appendix 2, along with updated simulations confirming that these tests as

implemented here are correctly sized for the sample lengths used in the estimated models for real

output analyzed in Section 4 below.  It bears mention, however, that – even with bootstrapping – 

the BDS test is correctly sized only for embedding dimension (m) equal to two.  The size of the

BDS test at higher values of m is apparently distorted by a high sensitivity to the minor amounts

of linear dependence remaining in the series on those occasions where the pre-whitening

procedure mis-identifies the order of the AR(p) process used to eliminate serial correlation in the

series prior to bootstrapping.  Consequently, all BDS test results quoted below are for m equal to

two.

Many other tests for nonlinear serial dependence have been described in the literature,

including: Ramsey (1969), Ashley and Patterson (1986), Saikkonen and Luukkonen (1988),

White (1989), Mizrach (1991), Nychka, et al. (1992), Kaplan (1993), Dalle Molle and Hinich

(1995), and Hansen (1999).  Since asymmetry is a common consequence of nonlinear serial

dependence, one might also consider tests for steepness or deepness, as in Ramsey and Rothman

(1996) and Verbrugge (1997).  No representation is made here – nor, for the present purpose,

needs to be made – that the group of tests listed in Table 1 is in any sense optimal nor that these

tests in any well-defined sense “span the space” of all possible nonlinearity tests.  Indeed, insofar

as useful new tests for nonlinear serial dependence continue to appear and insofar as some

usefully distinct existing tests have no doubt been omitted from consideration here, our results 
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using this group of tests can be taken as a lower limit on the potential usefulness of the proposed

approach.  

Rather, the issue here is the degree to which each test in the group has power to detect

some distinct aspect of nonlinear serial dependence.  This issue is briefly examined in this

section by estimating the power of each test in the group against a number of alternative data

generating processes commonly considered in the literature.  Other studies examining the ability

of various tests to detect nonlinearity include: Lee, et al. (1993), Barnett, et al. (1997), and Lemos

and Stokes (1998).

The processes considered here are listed in Table 2.  In each case, the innovation series

(,t) is an independent unit normal variate; Student’s t, exponential, and symmetric Paretian

variates are considered in Patterson and Ashley (2000), yielding similar results.  The nonlinear

autoregressive model used here is taken from Lee et al. (1993).  As is the case with the set of

nonlinearity tests considered, no representation is made here that the set of processes included in

Table 2 in any well-defined sense encompasses all possible nonlinear generating mechanisms.

On the other hand, the set of processes given in Table 2 does include generic versions of a

number of different nonlinear models which have received empirical and/or theoretical attention

in the literature.
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Table 2.   Data Generating Processes Considered

Conditional Heteroskedasticity Models:

     ARCH
xt  =  (ht)

.5 ,t

ht  = .000019 + .846{x2
t -1 + .3x2

t -2 + .2x2
t -3 + .1x2

t -4}

     GARCH
xt  =  (ht)

.5 ,t

ht  =  .011 + .12 (xt-1)
2  + .85 ht-1

Switching Models:

     Threshold Autoregression        

                  (TAR)

xt  =   -.5 xt-1  +  ,t       if  xt-1 < 1

xt  =    .4 xt-1  +  ,t       otherwise

     Two State Markov Switching

xt  =   -.5 xt-1  +  ,t       if in state 1

xt  =    .4 xt-1  +  ,t       if in state 2

(Remain in state with probability .90)

Other models:

     Bilinear xt    =   .7 xt-1 ,t-2   +   ,t

     Nonlinear Autoregressive xt    =   .7 |xt-1| / (.7 |xt-1| + 2)   +  ,t 

The estimated power of each nonlinearity test against each of these alternatives is given in

Table 3 below.  All figures quoted are based on 250 generated samples; the parameters L, p, m, R,

k, and M are defined in Appendix 1, where each test is discussed.  BDS test results were

calculated for , equal to one half, one, and two standard deviations; for brevity, results are

quoted only for , equal to one; BDS test results at values of the embedding dimension (m)
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exceeding two are omitted due to the problems with the size of the test at these embedding

dimensions noted earlier in this section.  The 5% critical region for each test was obtained using

1000 bootstrap replications; details on the pre-whitening and bootstrapping procedures used are

given in Appendix 2. 
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Table 3   Power Estimates of 5% Tests
 200 Observations

McLeod-Li Engle LM BDS Tsay Bicovariance Bispectrum

L = 24 p = 5 m = 2 k = 5 R  = 8 M = 24

Conditional Heteroskedasticity Models:

    ARCH .62 .80 1.00 .32 .46 .10

    GARCH .71 .72 .65 .38 .68 .09

Switching Models:

    Threshold AR .12 .13 .62 .78 .10 .12

    Markov .17 .32 .56 .11 .13 .06

Other Models:

    Bilinear .85 .98 .97 .99 .99 .15

    Nonlinear AR .04 .06 .06 .09 .09 .06
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The power results in Table 3 indicate that no single test dominates the others across all

six alternative generating processes.  For present purposes, however, what is important is that

this set of tests displays distinct patterns of power against these specific alternatives.  For

example, both the BDS and Tsay tests seem to be notably powerful against the threshold

autoregressive alternative, whereas the BDS test appears to be uniquely powerful against this

Markov switching alternative. 

Of course, the most relevant set of nonlinear processes to consider are the ones which

have actually been specified and estimated in the literature for the time series at issue: U.S. real

output, in the present case.  Several such processes are analyzed in the next section.

4.  Evaluating Four State-Switching Models for U.S. Real GNP

In this section we apply our new approach to analyze the effectiveness of four state-

switching models for the quarterly growth rate of U.S. real GNP.  One of these is a threshold

autoregressive model due to Potter (1995).  Another two are Markov switching models due to

Lam (1997); one of these Markov switching models assumes constant state transition

probabilities {as in Hamilton (1989), only with a longer sample period} and the other models

each state transition probability as a function of the number of periods that the system has been in

the current state.  In addition, we have estimated our own Smooth Transition Autoregressive

(L-STAR) model for U.S. real GNP.

The battery of tests discussed in Section 3 were applied to the logarithmic growth rate of

U.S. real GNP over a sample period similar to that used by Potter and Lam in specifying and
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estimating their models for this time series.  The resulting p-values for rejection of the null

hypothesis of a linear generating mechanism for this series are given in Table 4:

Table 4  Significance Levels for Nonlinearity Tests on U.S. Real GNP {1953I to 1993III}

McLeod-Li Engle LM BDS Tsay Bicovariance Bispectrum

.218 .525 .356 .025 .017 .331

Consistent with results in Ashley and Patterson (1989) on the U.S. Index of Industrial Production

and with results in Hamilton (1989), Potter (1995), and Altug, et al. (1999) on real GNP itself,

the null hypothesis of a linear generating mechanism for this time series can be rejected at the 5%

level.  The pattern of these test results – which we here take to be a new stylized fact about U.S.

real GNP –  is noteworthy, however.  

GNP is used here rather than GDP for consistency with the estimated models to be

analyzed; these two series in any case differ little for U.S. data.  More problematic is the fact that

both GNP and GDP figures have been repeatedly revised since the time these models were

estimated; even the methodology for deflating GNP has changed subsequent to Potter’s work. 

Fortunately, our method does not require us to re-estimate these models, but it does seem

important to compute the nonlinearity test p-values using consistently revised GNP data similar

to that which was available to Potter and Lam at the time.  Consequently, the data used in Table 4

is drawn from a sample obtained in early 1994 for use in Altug, et al. (1999).  We note in passing

that the most striking aspect of the results in Table 4 – that the p-values for the Tsay and Hinich
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Bicovariance are notably smaller than that for the BDS test – is still evident, albeit in somewhat

muted form, using current chain-weighted real GDP figures over this sample period: the p-values

for these three tests are in that case .090, .067, and .012,  respectively. 

McConnell and Perez-Quiros (2000) observe that the variance in U.S. real output dropped

in the early to middle 1980's, but this shift is by no means evident in the data over the sample

periods used by Potter and Lam.  Nor is the pattern of nonlinearity test p-values observed in the

actual real output data an artifact of this shift: using sample data from 1953I to 1983IV yields

similar results, although all of the p-values are much larger because ending the sample period in

1983 reduces the sample length from 163 to 124 observations.  In particular, the BDS test still

fails to reject the null hypothesis of linearity (p-value = .35), whereas the Tsay and Hinich

Bicovariance tests, with p-values of .13 and .08, respectively, still yield some evidence against

the null hypothesis of a linear generating mechanism. 

Real output is commonly modeled as some sort of two-state regime switching process

nowadays.  Note, however, that the pattern of significance levels (p-values) in Table 4 is quite

different from what one might expect based on the regime switching model power results

reported in Table 3.  For example, using data generated from the simple TAR model considered

in Section 3, the Hinich Bicovariance test has quite low power and the BDS test has relatively

high power.  Similarly, for data generated from the simple Markov regime switching model

considered in Section 3, both the Tsay and the Hinich Bicovariance tests have low power relative

to the BDS test.  In contrast, using the actual data on real GNP, we see in Table 4 a fairly strong

rejection from the Tsay test and the Hinich Bicovariance test, but the BDS test cannot reject the

null hypothesis at all.  Thus, if the true generating mechanism for real GNP is a regime-switching

model similar to either model considered in Section 3, it is surprising that the p-value for the
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BDS test using the sample data is so high relative to the p-values for the Tsay and Hinich

Bicovariance tests. 

Of course, what is really at issue is not whether the regime-switching models examined in

the power calculations of Section 3 are consistent with this new stylized fact about U.S. real

GNP, but whether or not regime-switching models estimated using actual U.S. real GNP data are

consistent with it.  

To examine this issue, we first estimate the power of all six tests using simulated data

generated from each of the four estimated models for real GNP, all of which were specified and

estimated over essentially the same sample period used in obtaining the results given in Table 4. 

If any one of these estimated models is consistent with our new “stylized fact” concerning real

GNP, then the tests which did reject the null hypothesis of a linear generating mechanism for the

actual data (i.e., the Tsay and Hinich Bicovariance tests) should have relatively high power to

detect this particular alternative, and the tests (i.e., BDS) which failed to reject the null

hypothesis of a linear generating mechanism in the actual data should have relatively low power

to detect this particular alternative.  For each estimated model we then obtain a statistical test of

the null hypothesis that this model generated the sample data.  This null hypothesis is tested by

computing the percentage of artificial data sets simulated from the estimated model which yield a

set of nonlinearity test results which differ from those expected from this generating model to a

greater degree than does the set of test results (given in Table 4) observed using the actual sample

data.

The first model considered is a threshold autoregressive model for U.S. real GNP

identified and estimated by Potter (1995), based on an identification procedure suggested by Tsay

(1991).  Potter’s preferred model is:
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where the figures in parentheses are estimated standard errors and the sample period is 1948III to

1990IV.  Potter’s sample period includes a number of large variations at the beginning of the

sample.  In common with most authors, we exclude these unusual observations by starting our

sample period for Table 4 somewhat later.  Re-estimating Potter’s model over the period 1953I to

1993III, however, yields similar results, except that the term at lag five is less significant.

The second model considered here is a logistic Smooth Transition Autoregressive 

(L-STAR) model, as described in Teräsvirta, T. and H. Anderson (1992), Granger and Teräsvirta

(1993), and Teräsvirta, T. (1994).  Using the sample period 1953I to 1993III and starting with

Potter’s TAR model specification, we obtain

where F(x) is .  The terms at lag five in Potter’s specification are omitted because

they are not statistically significant and yield models which are inferior using either the AIC or

BIC criterion.
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The third model considered here is a two-state Markov switching model first proposed by

Hamilton (1989) and re-estimated by Lam (1997) over the sample period 1952II to 1996IV:

where the system remains in State I with probability .966 and remains in State II with probability

.208.  

Finally, the fourth model considered here is a two-state Markov switching model

proposed by Lam (1997) which generalizes this framework to allow both the mean growth rate

and the transition probabilities to depend on Dt, the number of quarters the system has been in its

current state:

where the probability of remaining in State I is the logistic of 
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and the probability of remaining in State II is the logistic of 

Table 5 lists power estimates for the six nonlinearity tests obtained using 1000 artificial

samples generated using each of these estimated models; the sample length for each generated

series was chosen to match the number of observations in the actual sample data used to obtain 

Table 5.  Empirical Power of 5% Tests Using Data
Generated From Estimated Models for U.S. Real GNP

McLeod-Li Engle LM BDS Tsay Bicovariance Bispectrum

Using simulated data from Potter (1995) TAR model for U.S. real GNP:

.91 .93 .83 .95 .96 .02

Using simulated data from estimated L-STAR model for U.S. real GNP:

.04 .06 .06 .13 .05 .09

Using simulated data from Lam (1997) re-estimation of 
Hamilton (constant transition probabilities) Markov switching model for U.S. real GNP:

.05 .07 .11 .07 .07 .07

Using simulated data from Lam (1997) estimated Markov switching model 
for U.S. real GNP with duration dependent mean and transition probabilities:

.09 .11 .11 .13 .14 .06
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the test results given in Table 4.  In each case the model innovations used were independent

draws from a normal distribution with variance equal to the estimated model error variance; this

corresponds to what is usually known as the parametric bootstrap.  

Except for the Hinich Bispectrum test, all of the tests appear to have high power to detect

the nonlinearity in artificial data generated from Potter’s estimated TAR model.  With power this

high, one would expect the McLeod-Li, Engle LM, and BDS tests to reject the null hypothesis of

linearity in the actual data if it were generated by a model similar to Potter’s TAR, but reference

to Table 4 shows that these three tests do not reject this null hypothesis in the sample data.  In

contrast, the power results in Table 5 indicate that none of the tests seems particularly effective at

detecting the nonlinearity in artificial data generated using either the L-STAR or one of the two

Markov switching models estimated by Lam (1997).  With power this low, one would not expect

the Tsay and Hinich Bicovariance tests to reject linearity in the actual data if these data were

generated by an L-STAR or by a Markov switching model such as these; but reference to Table 4

shows that they do reject this null hypothesis.  Thus, the pattern of which tests reject linearity

using the actual real GNP data conflicts with the pattern of power results obtained using artificial

data generated from each of the four estimated models.

In principle, these discrepancies could be due to ordinary sampling variation.  To assess

the statistical significance of these discrepancies for a particular estimated generating model, we

applied the test described in Section 2, approximating the joint distribution of the six nonlinearity

test p-values (p1 ... p6) by the set of 1000 p-value vectors obtained using the 1000 artificial data

sets generated from this model.  We then computed the fraction of these 1000 p-value vectors
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yielding a larger AP test statistic than that yielded by the p-value vector (quoted in Table 4)

obtained using the sample data.

Table 6 summarizes the results of these calculations using several variations of the AP

test statistic.  The first row of numbers in this table gives the results obtained using the AP test

statistic exactly as defined in Section 2.  The remaining rows display analogous alternative

results obtained using the sum of squared deviations from the median p-value for each of the six

nonlinearity tests instead of the mean values of these p-values and from using the sum of the

absolute deviations instead of sum of the squared deviations.

Table 6    P-values for Rejecting Models of US GNP Using AP Test

Markov Switching Models Deterministic Switching Models

Constant
transition

probabilites

Duration-
dependent
transition

probabilities

Threshold
Autoregression

Model

Smooth
Transition
Threshold

Autoregression
Model

Squared Deviation AP Test Statistic

     deviation from mean .425 .648 .058 .513

     deviation from median .472 .735 .053 .560

Absolute Deviation AP Test Statistic

     deviation from mean .570 .644 .040 .575

     deviation from median .616 .719 .035 .631



25

In view of the modest sensitivity of these results to the form of the AP statistic, we also

investigated an alternative formulation in which each of the six test p-values used is transformed

by the inverse logit cumulative distribution function:

where g(p) is ln{p/(1-p)}.  Again, the test was also computed in terms of absolute rather than

squared deviations and in terms of deviations from the median rather than deviations from the

mean:

Table 7    P-values for Rejecting Models of US GNP Using AP Test
Applied to Logit-transformed Nonlinearity Test p-values

Markov Switching Models Deterministic Switching Models

Constant
transition

probabilites

Duration-
dependent
transition

probabilities

Threshold
Autoregression

Model

Smooth
Transition
Threshold

Autoregression
Model

Squared Deviation   Test Statistic

     deviation from mean .211 .343 .035 .271

     deviation from median .208 .315 .033 .244

Absolute Deviation   Test Statistic

     deviation from mean .337 .415 .033 .357

     deviation from median .333 .402 .031 .346
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All four variations on both versions of the test yield essentially the same results.

However, the  results based on the logit-transformed nonlinearity test p-values are a bit

stronger and are notably more stable across the four variations; consequently, these results are

preferable.

The  test fails to reject the STAR model and either of the Markov switching models. 

In contrast, all four variations of the  test statistic yield results indicating that the nonlinear

serial dependence generated by the Potter threshold autoregressive model is inconsistent – at the

5% level of significance – with the pattern of nonlinearity test results obtained using the sample

data.  This is a fairly strong result in view of the fact that the 163 observations used in this

analysis would be considered a small sample for an analysis of nonlinear serial dependence. 

In view of the fact (Table 5) that all six nonlinearity tests have low power to detect the

kind of nonlinear serial dependence induced by the L-STAR and Markov switching models,

whereas the results in Table 4 show that the Tsay and Bicovariance tests do reject this null

hypothesis at the 5% level using the sample data, it is somewhat surprising that neither the AP

nor the  test is able to reject these models.  The power of the AP test and  tests is

apparently smaller in this situation.
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5. Summary and Conclusions

As noted in Section 2, time series models are currently evaluated based on two criteria:

(1)  the goodness of the model’s fit to the sample data (often narrowed to a consideration

of the statistical significance of the parameter estimates),

and

(2) the model’s postsample forecasting ability.

Existing nonlinear modeling frameworks (TAR, STAR, Markov-switching, etc.) are

sufficiently flexible as to routinely produce models with significant parameter estimates, but

these approaches ordinarily produce models which fail to forecast postsample.  (Perhaps

reasonably so, since postsample forecasting periods are usually not sufficiently long as to include

a substantial number of state switches.)  Here we have here proposed a complementary

evaluation strategy: we examine simulated data from an estimated model for the time series to

see how well it reproduces the nonlinear serial dependence observed in the sample data.  Because

this observed nonlinear dependence is usually detected by means of nonlinearity tests based on

higher moments of the model errors, our approach is similar in spirit to the common practice of

examining the sample correlogram of the errors (and the squares of the errors) made by a linear

model.

Harding and Pagan (2002) and Morley and Piger (2004) have informally examined the

degree to which simulated data from models for U.S. GDP yield business cycles with

characteristics – e.g., asymmetry, duration, etc. – similar to those observed in the sample data. 

Our approach subsumes theirs in that one could include nonlinearity tests – e.g., asymmetry tests,

such as those proposed by Ramsey and Rothman (1996) and Verbrugge (1997) – sensitive to
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these characteristics in the battery of nonlinearity tests used.  In addition, our framework

produces a straightforward statistical test of the model specification, whereas theirs does not.

In particular, this paper has employed our new approach to evaluate the ability of four

estimated state switching models for U.S. real output – two Markov switching models due to

Lam (1997), a threshold autoregressive (TAR) model due to Potter (1995), and a smooth

transition autoregressive (STAR) model estimated here – to capture or explain the nonlinear

serial dependence observed in this time series over the sample period 1953I to 1993III.  The

Markov switching and STAR models are not rejected, but we are able to reject the Potter

threshold autoregressive model at the 5% level of significance.

As with the analysis of a sample correlogram of model fitting errors in a linear ARMA

modeling setting, our model evaluation procedure is not intended to be an ending point.  Rather,

it is intended to form a diagnostic part of an iterative model specification process.  In this case,

our results suggest that either the specification of this particular TAR process needs modification

(e.g., different lag structures, a third state, etc.) or that a smoother switching process (Markov

switching, bilinear, or STAR ) might be more suitable for modeling the nonlinear serial

dependence in U.S. real output over this sample period.
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Appendix 1

Nonlinearity Tests Considered

McLeod-Li Test

This test for ARCH effects was proposed by McLeod and Li (1983) based on a suggestion

in Granger and Andersen (1978). It looks at the autocorrelation function of the squares of the

prewhitened data and tests whether corr(x2
t  , x

2
t -j)  is non-zero for some j.  The autocorrelation at

lag j for the squared residuals {x2
t} is estimated by:

Under the null hypothesis that xt  is an i.i.d process McLeod and Li (1983) show that, for

sufficiently large L,

is asymptotically P2(L) under the null hypothesis of a linear generating mechanism for the data. 

Typically L is taken to be around 20; below results are quoted for L = 24.
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Engle LM Test

This test was proposed by Engle (1982) to detect ARCH disturbances; as Bollerslev

(1986) suggests, it should also have power against GARCH alternatives.  As with most Lagrange

Multiplier tests, the test statistic itself is based on the R2 of an auxiliary regression, in this case:

Under the null hypothesis of a linear generating mechanism for xt, NR2 for this regression is

asymptotically distributed P2(M).   Below results are quoted for M = 5.

BDS Test

The BDS test is a nonparametric test for serial independence based on the correlation

integral of the scalar series, {xt}.  For embedding dimension m, let denote the sequence of

m-histories generated by {xt}:  = (xt, ... xt+m-1). 

Then the correlation integral Cm,T (,) for a realization of N is given by:

where Nm = N - (m - 1) and I,(O t
m , O s

m) is an indicator function which equals one if the sup norm

2O t
m -O s

m2  <  ,  and equals 0 otherwise.  Basically, Cm,N (,) counts up the number of m-histories

that lie within a hypercube of size , of each other.  Brock, Dechert, and Scheinkman (1996)

exploit the asymptotic normality of Cm,N (,) under the null hypothesis that {xt} is an i.i.d. process

to obtain a test statistic which asymptotically converges to a unit normal.  This convergence
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requires extremely large samples for values of the embedding dimension (m) much larger than 2,

so attention here is restricted to the cases m = 2, 3, and 4.  Where (as here) the data has been

normalized to unit variance, the test is ordinarily computed for , =.5, 1, and 2; results are quoted

below for , = 1.

According to de Lima (1997) the BDS test requires no moment restrictions.  Apparently,

this follows from the fact that the test maps the sup norm 2O t
m -O s

m2 onto [0, 1] in ú1.  However,

de Lima (1997) also points out that the existence of the second moment is probably required

when the test is applied (as it must be) to the residuals from a linear regression. 

Tsay Test

The Tsay (1986) test is a generalization of the Keenan (1985) test; it explicitly looks for

quadratic serial dependence in the data, using quadratic terms lagged up to k periods.  

Let the K = k(k+1)/2 column vectors V1 ... VK contain all of the unique crossproducts of

the form xt-i xt-j, where i 0 [1, k] and j 0 [i, k].  Thus, vt,1 = x2
t -1,  vt,2 = xt-1 xt-2,  vt,3 = xt-1 xt-3,   ...   

vt,k = xt-1 xt-k,  vt,k+1 = x2
t -2,  vt,k+2 = xt-2 xt-3,  vt,k+3 = xt-2 xt-4, ... and vt,K = x2

t -k.  And let v^ t,i denote the

projection of vt,i on the subspace orthogonal to xt-1 , ... , xt-k  S  i.e., the residuals from a regression

of  vt,i on xt-1 , ... , xt-k.  

The parameters (1 ... (K are then estimated by applying OLS to the regression equation

A value of k = 5 is used below, so that K = 15.  The Tsay test statistic is then just the usual F

statistic for testing the null hypothesis that (1 ... (K are all zero.
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Hinich Bicovariance Test

This test assumes that {xt} is a realization from a third-order stationary stochastic process

and tests for serial independence using the sample bicovariances of the data.  The (r,s) sample

bicovariance is defined as:

The sample bicovariances are thus a generalization of a skewness parameter.  The C3(r,s) are all

zero for  zero mean, serially i.i.d. data.  One would expect non-zero values for the C3(r,s) from

data in which xt depends on lagged crossproducts, such as xt-ixt-j and higher order terms.   

Let G(r,s)  =  (N - s)½ C3(r,s) and define X3 as

Under the null hypothesis that {xt} is a serially i.i.d. process, Hinich and Patterson (1995) show

that X3 is asymptotically distributed P2(R [R -1]/2) for R  < N½ ; based on their simulations, they

recommend using R  = N.4.  The X3 statistic detects non-zero third order correlations; it can be

considered a generalization of the Box-Pierce portmanteau statistic.

Hinich Bispectrum Test

This nonparametric test examines the third order moments (bicovariances) of the data in

the frequency domain to obtain a direct test for a nonlinear generating mechanism, irrespective of

any linear serial dependence which might be present.  Consequently, when this test rejects, one
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need not worry about the possibility that the linear prewhitening model has failed to remove all

linear serial dependence in the data.  More importantly for the present context, this test’s sole

focus on nonlinear serial dependence implies that it is making substantially different use of the

sample bicovariance data than does the Hinich Bicovariance test described above.

Suppose that {yt}, the series of interest, is a third-order stationary time series with, for

expositional convenience, E{yt} = 0.  The series {yt} might be serially correlated, in which case it

is distinct from the prewhitened fitting error series denoted {xt} above.  Letting cyyy(r,s) denote

the third order cumulant function for {yt},

the bispectrum of {yt} at frequency pair (f1, f2) is its (double) Fourier transform:

By (f1, f2) is a spatially periodic function of  (f1, f2), whose principal domain is the triangular set S

= {0 < f1 < ½,  f2 < f1,  2f1 +f2 < 1}; see Brillinger and Rosenblatt (1967) for a rigorous treatment

of the bispectrum.

If the time series {yt} is linear – so that it can be expressed as

where ut ~ iid(0, F2) and the sequence of weights {a(n)} is fixed  –  then the square of the

skewness function
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is a constant for all frequency pairs (f1, f2) in S, where Sy(f) is the spectrum of {yt} at frequency f. 

This result was first proven in Brillinger and Rosenblatt (1967); an elementary proof is given in

Hinich (1982).

Under the null hypothesis of a linear generating mechanism, this result implies that the

sample estimates of Q2 (f1, f2) for different frequency pairs will differ from one another no more

than one would expect due to sampling error.  In particular, Hinich (1982) shows that consistent

sample estimates of 2Q2 (f1,f2) are asymptotically distributed as a noncentral chi-squared variate,

P2(2, 8), with constant non-centrality parameter (8) under the null hypothesis of linearity;

whereas, if the null hypothesis of linearity is false, then 8 is dependent on f1 and f2.  The Hinich

test then uses an expression for the asymptotic distribution of the interdecile range of

observations from a specified distribution given by David (1970) to test whether the dispersion in

the estimates of 2Q2 (f1,f2) exceeds that which one would expect under the null hypothesis.  The

interdecile (rather than the interquartile) range is used here because it yields test results which are

more robust to non-gaussianity in the data.  (See also Subba Rao and Gabr (1980) for an earlier

approach.)

The bispectrum {By (f1, f2)} is consistently estimated using an average of appropriate

triple products of the Fourier representation of the observed time series.  This average is taken

over a square containing M adjacent frequency pairs.  As with smoothing of a periodogram so as

to obtain a consistent estimate of the spectrum, large M reduces the variance of the estimator at

the cost of introducing some small sample bias.  Hinich (1982) shows that M must exceed N.5 in
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order to consistently estimate By (f1, f2); based on simulation results in Ashley, Patterson, and

Hinich (1986) M, is set to the integer closest to N.6 in the calculations reported below.

The Hinich Bispectrum test has the nice property that it is unaffected by the application of

a linear filter to yt.  (This follows from the fact that the squared skewness function, Q2 (f1,f2), is

invariant to linear filtering; see Ashley, Patterson, and Hinich (1986, p. 174) for a proof.) 

Consequently – and in contrast to other approaches – the results from the Hinich Bispectrum test

are robust to any errors one might make in pre-whitening the sample data. 
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Appendix 2

The Sizes of the Nonlinearity Tests

Like most econometric procedures, the tests described in Appendix 1 are only

asymptotically justified.  Particular concern has been expressed about the validity of the BDS test

for reasonable sample sizes and addressed, to some degree, in Brock, et al. (1991).  More

recently, de Lima (1997) has considered the behavior of a number of nonlinearity tests where the

moment restriction assumptions underlying the asymptotic distributions of these tests are not

satisfied, finding particular problems in situations involving leptokurtic (heavy-tailed) data.

Because we share these concerns, we routinely bootstrap the significance levels of all the

tests used here.  This is very straightforward.  After pre-whitening, so that the data is

(asymptotically) serially i.i.d. under the null hypothesis of a linear generating mechanism, we

draw 1000 N-samples at random from the empirical distribution of the observed N-sample of

data – i.e., from the fitting errors of the estimated AR(p) model.  The bootstrap significance level

for a given test is then just the fraction of these 1000 “new” N-samples for which the test statistic

exceeds that observed in the sample data.  It is simple enough to confirm that 1000 bootstrap

replications is sufficient by merely observing that the results are invariant to increasing this

number; it is distinctly less clear that N itself is sufficiently large: after all, the pre-whitening

procedure and bootstrap itself are themselves only asymptotically justified.

Consequently, it is of interest to examine the actual size of each test for samples of length

similar to that used in the models for U.S. real output examined in Section 4.  To that end, 200

serially i.i.d. variates were generated from each of four distributions: gaussian, exponential,

Student’s t with 5 degrees of freedom, and the symmetric stable Paretian distribution with index
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" = 1.93.  The exponential distribution is quite asymmetric.  Both of the latter two distributions

are heavy-tailed S to the point where the variance does not exist for the symmetric stable Paretian

distribution with this index value.  (Symmetric stable Paretian variates have finite variance only

for " $ 2.00;  the value " = 1.93 used here is Fama’s (1965) estimate for U.S. stock  price data. 

The Paretian variates were obtained using the exact algorithm given by Kanter and Steiger

(1974).)   Since the bootstrap is actually applied to the AR(p) fitting errors, we also examined the

actual sizes of the tests for linearly dependent data, where the observations are generated by an

AR(2) process driven by innovations generated from each of these distributions.  The AR(2)

process used was yt  =  .28yt-1 + .08yt-2 + ,t  or, equivalently, yt  = (1 - .456B)(1 + .176B)yt + ,t.

The results of these calculations are given in Table 7 below.  Under the null hypothesis

that the actual size is .05, an (asymptotic) 95% confidence interval for these estimates is 

(.036, .064); results significantly different from .05 are shown in bold.  All figures quoted are

based on 1000 samples, each of length 200, bootstrapped from the fitting errors of an AR(p) pre-

whitening model, where p is chosen (for each sample) to minimize the value of the BIC.  The

parameters L, p, m, k, R , and M are defined in Appendix 1, where each test is discussed.  BDS

test results were calculated for the parameter , equal to one half, one, and two standard

deviations; for brevity, results are quoted only for , = 1.  

We observe that the actual sizes for these bootstrapped tests appear to be satisfactory in

all cases except the BDS test with embedding dimension (m) exceeding two.  (The fact that

several of the size estimates not involving the BDS test lie outside the 95% confidence interval

around .05 is inconsequential in view of the number of estimates made.)  Consequently, BDS test

results are only quoted only for embedding dimension two in the remainder of the paper.   These

BDS size results differ from those given in Patterson and Ashley (2000, Tables 4-1, 4-2) in that it
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was artificially assumed there that the correct value of p for the AR(p) pre-whitening model was

known.  Since the BDS test is correctly sized at all three embedding dimensions in those results,

the size problem here at larger embedding dimensions is evidently due to the BDS test’s high

sensitivity to the minor amounts of linear dependence remaining in the data on those occasions

where the prewhitening procedure mis-identifies the order of the AR(p) prewhitening model.

We conclude that it is reasonable to proceed using the bootstrapped tests for samples of

roughly this length or larger without further concern about moment restrictions or the form of the

data’s distribution. 
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Table 7
Empirical Size of 5% Tests

McLeod-Li Engle LM BDS Tsay Bicov. Bispectrum

L = 24 p = 5 m = 2  m = 3 m = 4 k = 5 R  = 8 M = 24

Serially i.i.d. Data  

Gaussian .045 .056 .057 .075 .088 .053 .052 .048

Student’s t(5) .045 .044 .056 .057 .076 .062 .061 .051

Exponential .037 .070 .057 .061 .067 .058 .061 .053

Paretian " =1.93 .048 .032 .062 .062 .065 .062 .049 .053

Linearly Dependent {AR(2)} Data

Gaussian .043 .060 .044 .046 .052 .057 .047 .046

Student’s t(5) .045 .056 .071 .100 .121 .055 .056 .047

Exponential .026 .045 .062 .064 .071 .047 .059 .047

Paretian " =1.93 .037 .041 .055 .068 .072 .045 .049 .059
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